
DecentSampler
Release 1.11

David Hilowitz

Mar 23, 2024

CONTENTS

1 Contents 3
1.1 File Format Overview . 3
1.2 The <ui> element . 4
1.3 The <groups> element (required) . 11
1.4 The <effects> element . 16
1.5 The <midi> element . 25
1.6 The <noteSequences> element . 27
1.7 The <modulators> element . 28
1.8 The <tags> element . 30
1.9 Appendix A: The Color Format . 30
1.10 Appendix B: The <binding> element . 31
1.11 Appendix C: Boilerplate .dspreset File . 36
1.12 Useful Tutorials and Resources . 38

i

ii

DecentSampler, Release 1.11

DecentSampler is a free sampling plug-in that allows music composers to use multi-samples in the DecentSampler
format. This document is a guide to creating samples in that format.

If you have no familiarity with the DecentSamples format, this video is a great place to start. After that, you’ll want to
start at the File Format Overview to learn a bit more about how to create sample libraries.

Note: This project is under active development.

CONTENTS 1

https://www.youtube.com/watch?v=UxPRmD_RNCY

DecentSampler, Release 1.11

2 CONTENTS

CHAPTER

ONE

CONTENTS

1.1 File Format Overview

At its core each DecentSampler sample library consists of two things: a folder containing a bunch of assets like audio
files and pictures, and a single text file (called a dspreset file) which describes how the engine should use all of those
files. This reference document is a guide to creating dspreset files.

dspreset files are just XML files. As such, each one begins with an XML declaration:

<?xml version="1.0" encoding="UTF-8"?>

1.1.1 The top-level <DecentSampler> element (required)

At the top level of every dspreset file is a <DecentSampler> element. Every file must have one. Here is a list of
attributes:

• minVersion (optional): This is the minimum version on which this preset is known to run. If a user is running
an old version of DS, and a developer has specified a minVersion for their instrument, a dialog box will show up
telling users that their version is outdated and that they should upgrade in order to get the full effect. They can
than choose to ignore this warning or hit download. The dialog box does not show up for iOS users as most of
them have auto-updates turned on.

Example:

<?xml version="1.0" encoding="UTF-8"?>
<DecentSampler minVersion="1.0.0">

<!-- More tags go here. :) -->
</DecentSampler>

Underneath the top-level <DecentSampler> element you can put any number of other elements, all of which are
described in the sections that follow.

3

DecentSampler, Release 1.11

1.2 The <ui> element

The <ui> element is how you specify a user interface for your instrument. Each dspreset should have at most one
<ui> element. There are several important attributes:

• coverArt (optional): A relative or absolutely path to a cover art image to use. After the first time this library is
opened, this will get displayed on the “My Libraries” tab.

• bgImage (optional): A relative or absolutely path to a background image to use.

• bgColor (required): An eight digit hex value indicating the background color to be used for the background of
the UI. This color will be drawn underneath any background image specified by bgimage.

• width (required): The width of your user interface. Recommended value: 812.

• height (required): The height of your user interface. Recommended value: 375.

Example:

<DecentSampler>
<ui width="812" height="375">
<tab name="main">
<labeled-knob x="560" y="0" label="Tone" type="float" minValue="60" maxValue="22000

→˓"
textColor="FF000000" value="22000.0" uid="y8AA4uuURh3">

<binding type="effect" level="instrument" position="0" parameter="FX_FILTER_
→˓FREQUENCY"/>

</labeled-knob>
<label x="360" y="0" width="50" height="30" text="Reverb"/>
<control x="360" y="30" parameterName="Reverb" type="float" minValue="0" maxValue=

→˓"1" textColor="FF000000" value="0.5">
<!-- Your <binding /> elements should go here -->
</control>

</tab>
</ui>

</DecentSampler>

1.2.1 The <tab> element

The <tab> element lives underneath the <ui> element. This architecture was chosen because we may, at some point,
add support for multiple tabs. At present it is only possible to have a single tab within DecentSampler instruments. As
such, every UI must have at most one <tab> element.

Attributes:

• name (optional): An optional name to be associated with this tab. This is currently not displayed anywhere.

4 Chapter 1. Contents

DecentSampler, Release 1.11

1.2.2 The <button> element

The <button> element allows you to create a button within your UI. It lives underneath the <tab> element. There are
two styles of buttons: text buttons and image buttons.

Attributes:

At-
tribute

Required Description De-
fault

x (required) The x position of the menu None
y (required) The y position of the menu None
width (required) The width of the menu None
height (required) The height of the menu None
value (optional) The is the 0-based index of the button state that is currently selected. A value of 0

means that the first state is active.
0

style (optional) The type of button we want. There are two valid values: text, image. text
mainImage(required for

image but-
tons)

For image buttons only. The path of the main image to display for this button. This
can also be set at the state level so that it only applies to a specific state.

None

hoverImage(optional) For image buttons only. The path of the main image to display when the user hovers
their mouse over this button. This can also be set at the state level so that it only
applies to a specific state.

None

clickImage(optional) For image buttons only. The path of the main image to display when the user clicks
down on this button. This can also be set at the state level so that it only applies to a
specific state.

None

visible(optional) This controls whether or not this button is visible. There are two valid values: true,
false.

true

Example:

<button x="10" y="40" width="120" height="30" style="image" value="0" mainImage=
→˓"samples/ButtonMainImage.png" hoverImage="samples/ButtonHoverImage.png" clickImage=
→˓"samples/ButtonSelectedImage.png">
<!-- Your button states go here -->

</button>

The <state> element

In order for your button to work, it must contain at least one <state> elements.

Attributes:

At-
tribute

Required Description

name (required for
text buttons)

The text to display on a text button when this state is active

mainImage(required for
image buttons)

For image buttons only. The path of the main image to display for this button when
the button is in the current state.

hoverImage(optional) For image buttons only. The path of the image to display when the user hovers their
mouse over this button when the button is in the current state.

clickImage(optional) For image buttons only. The path of the image to display when the user clicks down
on this button when the button is in the current state.

1.2. The <ui> element 5

DecentSampler, Release 1.11

In order to have your <button> elements actually do something useful, you need to attach bindings to them. Here’s
an example:

<button x="10" y="30" width="70" height="50" style="image" value="0" >
<state name="English" mainImage="samples/EFlag_MainImage.png" hoverImage="samples/

→˓EFlag_HoverImage.png" clickImage="samples/EFlag_SelectedImage.png">
<!-- Turn on this group -->
<binding type="general" level="group" position="0" parameter="ENABLED"␣

→˓translation="fixed_value" translationValue="true" />
<!-- Turn off this group -->
<binding type="general" level="group" position="1" parameter="ENABLED"␣

→˓translation="fixed_value" translationValue="false" />
</state>
<state name="French" mainImage="Samples/FFlag_MainImage.png" hoverImage="Samples/

→˓FFlag_HoverImage.png" clickImage="Samples/FFlag_SelectedImage.png">
<!-- Turn off this group -->
<binding type="general" level="group" position="0" parameter="ENABLED"␣

→˓translation="fixed_value" translationValue="false" />
<!-- Turn on this group -->
<binding type="general" level="group" position="1" parameter="ENABLED"␣

→˓translation="fixed_value" translationValue="true" />
</state>

</button>

As you can see, this example uses a button to switch between two groups. You’ll note the liberal use of the fixed_value
translation mode above. This means that when any of these options are selected, a fixed predetermined value is used
for the value of that binding.

The <image> element

The <image> element allows you to place a static image into your user interface. It lives underneath the <tab> element.
Attributes:

• x (required): The x position of your image where (0,0) is the top-left corner

• y (required): The y position of your image where (0,0) is the top-left corner

• width (required): The width in pixels of the image component

• height (required): The height in pixels of the image component

• path (required): The relative path of the image file to show in this component

• aspectRatioMode (required): Whether or not the engine should preserve the aspect ratio of the image. Note:
regardless of these settings, you still need to specify a width and height for your image element. Valid values:
preserve, stretch. Default value is preserve.

• visible (optional): This controls whether or not this image is visible. There are two valid values: true (default),
false.

6 Chapter 1. Contents

DecentSampler, Release 1.11

The <label> element

The <label> element allows you to place a static block of text into yoru user interface. It lives underneath the <tab>
element. Attributes:

• x (required): The x position of your control where (0,0) is the top-left corner

• y (required): The y position of your control where (0,0) is the top-left corner

• text (required): The actual text that should be displayed as part of the label.

• textColor (optional): An 8 digit hex value indicating the text color to be used for the label. See Appendix A
for an explanation on these hex values.

• textSize (optional): A font size for the text label. Default: 12

• width (required): The width in pixels of the label.

• height (required): The height in pixels of the label.

• vAlign (optional): The vertical alignment of the text within the box described by the width and height attributes.
Valid values: top,bottom, center. Default is center.

• hAlign (optional): The horizontal alignment of the text within the box described by the width and height at-
tributes. Valid values: left,right, center. Default is center.

• visible (optional): This controls whether or not this text label is visible. There are two valid values: true
(default), false.

A label’s text can also be set dynamically using bindings using the TEXT binding parameter name.

The <labeled-knob> and <control> elements

The <labeled-knob> and <control> elements live underneath the <tab> element. These tags correspond to user
controls (usually round radial dials) that can be used as part of a UI. These two element types are the same except that
<labeled-knob> elements contain built-in labels, where as <control> elements do not. Every tab can have many
<control> or <labeled-knob> elements underneath it.

For precise UI creation, it may be advisable to use a combination of <control> & <label> elements rather than
<labeled-knob>.

Attributes:

• x (required): The x position of your control where (0,0) is the top-left corner

• y (required): The y position of your control where (0,0) is the top-left corner

• width (required): The width in pixels of the knob + label.

• height (required): The height in pixels of the knob + label.

• parameterName (required): In a situation where the sampler does not have enough room to display the full
UI, a shrunken down version of the UI will be used. In such situations, this control will be labeled using the
parameterName. It is good practice to always include a parameterName. If not parameterName is specified
and a value label is specified, then that will be used instead.

• style (optional): The specific kind of control that is created. The following values are supported: linear_bar,
linear_bar_vertical, linear_horizontal, linear_vertical, rotary, rotary_horizontal_drag,
rotary_horizontal_vertical_drag, rotary_vertical_drag, custom_skin_vertical_drag,
custom_skin_horizontal_drag. Default: rotary_vertical_drag.

• showLabel (optional): A true/false value dictating whether or not a built-in label should be displayed. Default:
true for <labeled-knob> and false for <control> elements

1.2. The <ui> element 7

DecentSampler, Release 1.11

• label (optional): If showLabel is true, the actual text that should be displayed above the control.

• parameterName (required): In a situation where the sampler does not have enough room to display the full
UI, a shrunken down version of the UI will be used. In such situations, this control will be labeled using the
parameterName. It is good practice to always include a parameterName.

• minValue (optional): The minimum value of your control. Default: 0

• maxValue (optional): The maximum value of your control. Default: 1

• value (optional): The initial value of your control. Default: 0

• defaultValue (optional): If a user double-clicks on the control, the control’s value will be set to this default
value. If no default value is specified, then nothing will happen on double-click.

• valueType (optional): There are three possible values for this float which yields numbers with two decimal
points, integer which yields whole numbers, and musical_time which yields musical time increments in
beats and measures. This last option is for use with the built-in delay effect only. Default: float

• textColor (optional): An 8 digit hex value indicating the text color to be used for the label. See Appendix A
for an explanation on these hex values.

• textSize (optional): A font size for the text label. Default: 12

• trackForegroundColor (optional): An 8 digit hex value indicating the foreground color to use for the knob
track. See Appendix A for an explanation on these hex values.

• trackBackgroundColor (optional): An 8 digit hex value indicating the background color to use for the knob
track. See Appendix A for an explanation on these hex values.

• visible (optional): This controls whether or not this control is visible. There are two valid values: true
(default), false.

It is also possible to use custom control graphics using the following attributes:

• customSkinImage (optional): This is path to an image to use for the control. This is expected to
be a JPEG or PNG in KnobMan format. A huge gallery of compatible knobs can be found here
(https://www.g200kg.com/en/webknobman/gallery.php).

• customSkinNumFrames (optional): The number of animation frames contained in the KnobMan image pointed
to by customSkinImage.

• customSkinImageOrientation (optional): The orientation of the frames within the KnobMan image pointed
to by customSkinImage. Valid values: horizontal, vertical. Default: vertical.

• mouseDragSensitivity (optional): An integer number describing how sensitive the control should be to mouse
drags. The higher the number, the less sensitive the control will be to mouse movements.

If you are using custom knobs, it’s important that you specify a style= value of either custom_skin_vertical_drag
or custom_skin_horizontal_drag.

Example:

<DecentSampler>
<ui>
<tab>
<labeled-knob x="560" y="0" label="Tone" type="float" minValue="60" maxValue="22000

→˓" textColor="FF000000" value="22000.0">
<!-- Your <binding /> elements should go here -->
</labeled-knob>
<label x="360" y="0" width="50" height="30" text="Reverb"/>
<control x="360" y="30" parameterName="Reverb" type="float" minValue="0" maxValue=

(continues on next page)

8 Chapter 1. Contents

DecentSampler, Release 1.11

(continued from previous page)

→˓"1" textColor="FF000000" value="0.5" style="custom_skin_vertical_drag" customSkinImage=
→˓"Samples/ENIGMA-nolight.png" customSkinNumFrames="31" customSkinImageOrientation=
→˓"horizontal" mouseDragSensitivity="100">

<!-- Your <binding /> elements should go here -->
</control>

</tab>
</ui>

</DecentSampler>

To learn how to make knobs actually control parameters of your instrument, see “Appendix B: Bindings” section below.

1.2.3 The <menu> element

The <menu> element allows you to create a drop-down menu within your UI.

Attributes:

At-
tribute

Re-
quired

Description

x (re-
quired)

The x position of the menu

y (re-
quired)

The y position of the menu

width (re-
quired)

The width of the menu

height (re-
quired)

The height of the menu

value (op-
tional)

The is the 1-based index of the menu option that is currently selected. NOTE: Index num-
bers for menu items start at 1. A value of 0 means that no item is selected.

visi-
ble

(op-
tional)

This controls whether or not this button is visible. There are two valid values: true, false. true

Example:

<menu x="10" y="40" width="120" height="30" value="2">
<!-- Your menu options go here -->

</menu>

The <option> element

In order for your drop-down menu to have options, it must contain <option> elements.

Attributes:

Attribute Required Description
name (required) The name of this element

That’s right. The <option> element has only one attribute. In order to have your <option> elements actually do
something useful, you need to attach bindings to them. Here’s an example:

1.2. The <ui> element 9

DecentSampler, Release 1.11

<menu x="10" y="40" width="120" height="30" requireSelection="true" placeholderText=
→˓"Choose..." value="2">
<option name="Menu Option 1">

<!-- Set the text of a label element -->
<binding type="control" level="ui" position="2" parameter="TEXT" translation=

→˓"fixed_value" translationValue="You chose the first option." />
<!-- Turn on this group -->
<binding type="general" level="group" position="0" parameter="ENABLED"␣

→˓translation="fixed_value" translationValue="true" />
<!-- Turn off this group -->
<binding type="general" level="group" position="1" parameter="ENABLED"␣

→˓translation="fixed_value" translationValue="false" />
</option>
<option name="Menu Option 2">

<!-- Set the text of a label element -->
<binding type="control" level="ui" position="2" parameter="TEXT" translation=

→˓"fixed_value" translationValue="You chose the second option." />
<!-- Turn off this group -->
<binding type="general" level="group" position="0" parameter="ENABLED"␣

→˓translation="fixed_value" translationValue="false" />
<!-- Turn on this group -->
<binding type="general" level="group" position="1" parameter="ENABLED"␣

→˓translation="fixed_value" translationValue="true" />
</option>

</menu>

As you can see, this example uses a menu to switch between two groups. It also sets the text of a text label. You’ll
note the liberal use of the new fixed_value translation mode above. This means that when any of these options are
selected, a fixed predetermined value is used for the value of that binding.

1.2.4 The <keyboard> element

The <keyboard> element lives underneath the <ui> element. This is where you specify settings relating to the on-
screen keyboard. There should be only one <keyboard> element in your preset file. At this point, the only settings are
color ranges which are specified using <color> sub-elements.

The <color> element

You can use <color> elements to change the color of portions of the on-screen keyboard. You can have as many
<color> elements as you like. Only white keys are affected. It’s worth noting that colors specified in the <color>
elements are overlayed on top of the white keys using a 75% transparency, so choose your colors accordingly. This is
done to preserve the readability of the key labels.

<DecentSampler>
<ui>

<!-- Other stuff here -->
<keyboard>

<color loNote="36" hiNote="50" color="FF2C365E" />
<color loNote="51" hiNote="57" color="FF6D9DC5" />
<color loNote="58" hiNote="67" color="FFCCF3F5" />
<color loNote="68" hiNote="73" color="FFE8DA9B" />

(continues on next page)

10 Chapter 1. Contents

DecentSampler, Release 1.11

(continued from previous page)

<color loNote="74" hiNote="84" color="FFD19D61" />
</keyboard>

</ui>
<!-- Other stuff here -->

</DecentSampler>

At-
tribute

Description

loNote (re-
quired)

The bottom of the range for which this color should be displayed. Format: MIDI Note number.

hiNote (re-
quired)

The top of the range for which this color should be displayed. Format: MIDI Note number.

color (re-
quired)

A text representation of the color to be used for this key range. See Appendix A for an expla-
nation on these hex values.

1.3 The <groups> element (required)

In this section, we’ll find elements that pertain to samples and sample-mapping.

Every dspreset file should have one and only one <groups> element. This is where you specify the samples that
make up your sample library. This element lives right underneath the top-level <DecentSampler> element. The basic
structure is this:

<DecentSampler>
<groups>

<group>
<sample /> <!-- This is where -->
<sample /> <!-- the samples -->
<sample /> <!-- get defined -->

</group>
</groups>

</DecentSampler>

At-
tribute

Description

volume(op-
tional)

The volume of the instrument as a whole. This will be reflected in the UI in the top-right corner.
Value can be in linear 0.0-1.0 or in decibels. If it’s in decibels you must append dB after the value
(example: “3dB”). Default: 1.0 (no volume change)

globalTuning(op-
tional)

Global pitch adjustment for changing note pitch. In semitones. For example 1.0 would be a half-step
up. Default: 0

glideTime(op-
tional)

The glide/portamento time in seconds. A value of 0.0 would mean no portamento. This value can
also be set at the <group> and <sample> levels, although most people will want to set it globally at
the <groups> level. Default: 0.0

glideMode(op-
tional)

Controls the glide/portamento behavior. Possible values are: always (glide is always performed),
legato (glide is performed only when transitioning from one note to another), and off. This value
can also be set at the <group> and <sample> levels, although most people will want to set it globally
at the <groups> level. Default: legato

1.3. The <groups> element (required) 11

DecentSampler, Release 1.11

1.3.1 The <group> element

Samples live in groups. There can be many group elements under the <groups> element. It can be useful to sort your
samples into groups in order to apply similar settings to them or to control them with a knob. The order of groups in
a file matters insofar as bindings will often reference groups by using an index. The first group in a file is group 0, the
second is group 1, etc.

At-
tribute

Description

enabledWhether or not this group is enabled. Possible values: true, false. Default: true (op-
tional)

volumeThe volume of the group. Value can be in linear 0.0-1.0 or in decibels. If it’s in decibels you must
append dB after the value (example: “3dB”). Default: 1.0

(op-
tional)

ampVelTrackThe degree to which the velocity of the incoming notes affects the volume of the samples in this
group. 0 = not at all. 1 = volume is completely determined by incoming velocity. When the value
is 1, a velocity of 127 (max velocity) yields a gain 1.0 (full volume), a velocity of 63 (half velocity)
yields a gain of 0.5 (half volume), etc.

(op-
tional)

groupTuningGroup-level pitch adjustment for changing note pitch. In semitones. For example 1.0 would be a half-
step up and -1 would a half-step down. Default: 0

(op-
tional)

The <sample> element

Underneath the <group> elements are <sample> elements. Each sample corresponds to a playable “zone” of your
instrument. Attributes:

12 Chapter 1. Contents

DecentSampler, Release 1.11

At-
tribute

Description

path (re-
quired)

The relative path of the sample file to play for this zone.

rootNote(re-
quired)

The MIDI note number (from 1 to 127) of the note.

loNote(op-
tional)

The MIDI note number (from 1 to 127) of the lowest note for which the zone should be triggered.
Default: 0.

hiNote(op-
tional)

The MIDI note number (from 1 to 127) of the highest note for which the zone should be triggered.
Default: 127.

loVel(op-
tional)

The lowest velocity for which this zone should be triggered. Default: 0

hiVel(op-
tional)

The highest velocity for which this zone should be triggered. Default: 127

loCCN
hiCCN

(op-
tional)

Using these parameter, you can use MIDI continuous controllers to filter whether or not a note should
be played. This lets you, for example, have one set of samples that get played when the piano sustain
pedal is down and another set that get played when it is up. Each time a MIDI CC value comes for
a specific CC#, the engine stores that value. When a “note on” signal is received, the engine makes
a decision (based on the last received value and the range defined by these attributes) about whether
or not this sample should be played. If you use loCCN, you must also use a corresponding hiCCN for
the same MIDI CC number so that you are defining a range of values. Example: loCC64="90" and
hiCC64="127" would mean that a “note on” message will only trigger this sample if the last received
value for CC64 (Sustain Pedal) is between 90 and 127. This can also be set at the <group> level.
Default:-1 (off)

start(op-
tional)

The frame/sample position of the start of the sample audio. This is useful if the sample starts midway
through the audio file. Default: 0

end (op-
tional)

The frame/sample position of the end of the sample audio. The is useful is the zone ends before the
end of the audio file. Default: the file’s length in samples minus 1.

tuning(op-
tional)

A fine-tuning number (in semitones) for changing the note pitch. e.g 1.0 would be a half-step up.
Default: 0

volume(op-
tional)

The volume of the sample. Value can be in linear 0.0-1.0 or in decibels. If it’s in decibels you must
append dB after the value (example: “3dB”). Default: 1.0

pan (op-
tional)

A number of -100 to 100. -100 in panned all the way to the left, 100 is panned all the way to the right.
This can also be set at the <group> or <groups> levels. Default: 0

pitchKeyTrack(op-
tional)

A number from 0.0 to 1.0. 0 means that the pitch will stay the same regardless of what note is played.
1 means that the pitch will increase by one semitone when the note increases by one semitone (i.e.
normal key pitch tracking). This can also be set at the <group> level. Default: 1

trigger(op-
tional)

Valid values: attackmeans a sample is played when the note on message is received. releasemeans
the sample is played when the note off message is received (aka a release trigger). first means that
the sample will only be played if no other notes are playing. legato means that the sample will only
be played if some other notes are already playing. This can also be set at the <group> level. Default:
attack.

tags (op-
tional)

A command-separated list of tags. Example: tags=”rt,mic1”. These are useful when controlling vol-
umes using tags. See Appendix D.

onLoCCN
onHiCCN

(op-
tional)

If you want a sample to be triggered when a MIDI CC controller message comes in, for example for
piano pedal down and pedal up samples, you use these attributes to specify the range of values that
should trigger the sample. If you use onLoCCN, you must also use a corresponding onHiCCN for the
same MIDI CC number. Example: onLoCC64="90" and onHiCC64="127" would mean that values
of CC64 (Sustain Pedal) between 90 and 127 will trigger the given sample. This can also be set at the
<group> level. Default:-1 (off)

playbackMode(op-
tional)

By default, the choice of playback engine is left up to the discretion of the user–they can set this in the
Preferences screen. However, a sample creator can override this setting by setting the playbackMode
for a specific sample, a group, or the entire instrument. Possible values are memory, disk_streaming,
and auto (default).

1.3. The <groups> element (required) 13

DecentSampler, Release 1.11

Looping

At-
tribute

Description

loopStart(op-
tional)

The frame/sample position of the start of the sample’s loop. If this is not specified, but the sample is
a wave file with embedded loop markers, those will be used instead. Default: 0

loopEnd(op-
tional)

The frame/sample position of the end of the sample’s loop. If this is not specified, but the sample
is a wave file with embedded loop markers, those will be used instead. Default: the file’s length in
samples minus 1.

loopCrossfade(op-
tional)

When loop crossfades are used, instead of simply looping at a specific end point, a portion of the
audio from before the loop point is faded in just as the audio from the end of the loop is faded out.
In this way, smooth audio loops can be achieved on samples that weren’t specifically prepared as
looping. This parameter is used for specifying the length of the crossade region in frames/samples.
This can also be set at the <group> level. Default: 0 (crossfades off).

loopCrossfadeMode(op-
tional)

This parameter is used to specify the curve used for crossfading when loop crossfades are turned
on. This can also be set at the <group> level. Value values: linear, equal_power. Default:
equal_power.

loopEnabled(op-
tional)

A boolean value indicating whether or not the loop should be used. Valid values: true, false

Amplitude Envelope

Each sample has its own ADSR amplitude envelope.

Attribute Description

ampEnvEnabled(op-
tional)

This turns the amplitude envelope on and off. Valid values are: false and true (default).

attack (op-
tional)

The attack time in seconds of the amplitude envelope of this zone. This can also be set at
the <group> or <groups> levels.

decay (op-
tional)

The decay time in seconds of the amplitude envelope of this zone. This can also be set at
the <group> or <groups> levels.

sustain (op-
tional)

The sustain level (0.0 - 1.0) of the amplitude envelope of this zone. This can also be set at
the <group> or <groups> levels.

release (op-
tional)

The release time in seconds of the amplitude envelope of this zone. This can also be set at
the <group> or <groups> levels.

The curve shapes of the attack, decay, and release zones can be changed as well. All three of the of the following
parameters use the same system: a value from -100 to 100 that determines the shape of the curve. -100 is a logarithmic
curve, 0 is a linear curve, and 100 is an exponential curve.

14 Chapter 1. Contents

DecentSampler, Release 1.11

At-
tribute

Description Default
Value

attackCurve(op-
tional)

A value from -100 to 100 that determines the shape of the attack curve. This can also
be set at the <group> or <groups> levels.

-100
(log-
arith-
mic)

decayCurve(op-
tional)

A value from -100 to 100 that determines the shape of the decay curve. The decay time
in seconds of the amplitude envelope of this zone. This can also be set at the <group>
or <groups> levels.

100
(expo-
nential)

releaseCurve(op-
tional)

A value from -100 to 100 that determines the shape of the release curves. The release
time in seconds of the amplitude envelope of this zone. This can also be set at the
<group> or <groups> levels.

100
(expo-
nential)

Round Robins

Round robins allow different samples to be played each time a zone is triggered. This is especially useful with sounds
that have short attacks (such as drums), and is a great way to keep your sample libraries from sounding fake. In order
for round robins to work, you must specify both a seqMode and a seqPosition for all samples. If you have several
different sets of round robins with different lengths, you’ll want to set the seqLength value as well. There are several
round-robin modes:

• round_robin: This causes samples to be triggered sequentially according to their seqPosition values.

• random: This causes random samples to be chosen from within the group of samples. If there are more than two
round robins, then the algorithm makes sure not to hit the same one twice in a row.

• true_random: This causes random samples to be chosen from within the group of samples.

• always: This just turns round robins off.

At-
tribute

Description

seqMode(op-
tional)

Valid values are random, true_random, round_robin, and always. A value indicating the de-
sired round robin behavior for this sample or group of samples. This can also be set at the <group>
and <groups> levels. Default: always

seqLength(op-
tional)

The length of the round robin queue. This can also be set at the <group> or <groups> levels. If this
is left out, then the engine will try to auto-detect the length of the roudn robin sequence. Default: 0

seqPosition(op-
tional)

A number indicating this zone’s position in the round robin queue. This can also be set at the
<group> level. Default: 1

Voice-Muting / Legato

Looping

1.3. The <groups> element (required) 15

DecentSampler, Release 1.11

At-
tribute

Description

silencedByTags(op-
tional)

A command-separated list of tags. Example: tags=”rt,mic1”. If a sample containing one of these tags
gets triggered, then this sample will be stopped. This is useful when setting up drums as it will allow
you mute one hi-hat when another hi-hat plays. See Appendix D.

silencingMode(op-
tional)

Controls how quickly voices get silenced. fast = immediately; normal = triggers the sample’s release
phase. This second option, when used in conjunction with the release attribute, allows you to specify
a longer release time. Values: fast, normal. Default: fast

previousNotes(op-
tional)

Only play this sample if the previously triggered note equals one of these notes. Format: a comma-
separated list of MIDI note numbers (from 1 to 127) of the note.

legatoInterval(op-
tional)

This is similar to the previousNote attribute. This causes the engine to only play the sample if the
previously triggered note is exactly this semitone distance from the previous note. For example, if the
note for which this sample is being triggered is a C3 and the legatoInterval is set to -2, then the
sample will only play if the previous note was a D3 because D3 minus 2 semitones equals C3. Format:
This can be a positive or negative whole number.

1.4 The <effects> element

Adding global, instrument-wide effects is easy: just add an <effects> element right below your top-level
<DecentSampler> element.

It is also possible to have effects that only get added to a specific group. To adding effects that only apply to a specific
group, all you need to do is create an <effects> group that lives underneath the <group> element for the group you
want to affect.

Group level effects are initialized every time a note is started and destroyed every time a note is stopped. If you play
two notes simultaneously, two instances of this effect will be created and these will be independent of eachother. As a
result, they use more CPU than global effects.

NOTE: Only certain effects will work as group-level effects: lowpass filter, hipass filter, bandpass filter, gain, and
chorus. Delay and reverb cannot work properly as they will be deleted before their tail peters out.

1.4.1 The <effect> element

Within the <effects> element, you can have any number of <effect> sub-elements. These specify parameters for
each individual effect that you would like to have in your global effects chain. There are currently only a handful effects
available although more could definitely be added on request:

Low-pass, Band pass, and Hi-pass filter

A 2-pole resonant filter that can be either a lowpass, bandpass, or highpass filter

Example:

<DecentSampler>
<effects>
<effect type="lowpass" resonance="0.7" frequency="22000" />

</effects>
</DecentSampler>

16 Chapter 1. Contents

DecentSampler, Release 1.11

There is also a single pole version of the lowpass filter that can be accessed using the lowpass_1pl effect type. This
version does not have a resonance parameter.

<DecentSampler>
<effects>
<effect type="lowpass_1pl" frequency="22000" />

</effects>
</DecentSampler>

Attributes:

At-
tribute

Type Valid Range De-
fault

type Re-
quired

The type of filter Must be either lowpass (legacy: lowpass_4pl), lowpass_1pl,
bandpass, or highpass

resonanceOp-
tional

The filter reso-
nance (Q)

0 - 1.0, where 1.0 is big, 0 is small. 0.7

frequencyOp-
tional

The filter fre-
quency

0 - 1.0, where 0 is not damped, 1.0 is fully damped. 0.3

Notch EQ Filter

A simple notch filter.

Example:

<DecentSampler>
<effects>
<effect type="notch" q="0.7" frequency="22000" />

</effects>
</DecentSampler>

Attributes:

Attribute Type Valid Range Default

type Required The type of filter Must be notch

frequency Required The filter frequency 60 - 22000.0 10000
Q Optional Q is the ratio of center frequency to bandwidth 0.01 - 18.0 0.7

1.4. The <effects> element 17

DecentSampler, Release 1.11

Peak EQ Filter

A peak filter centred around a given frequency, with a variable Q and gain.

Example:

<DecentSampler>
<effects>
<effect type="peak" q="0.7" frequency="22000" gain="2.0" />

</effects>
</DecentSampler>

Attributes:

At-
tribute

Type Valid
Range

De-
fault

type Re-
quired

The type of filter Must be
peak

frequencyRe-
quired

The filter frequency 60 -
22000.0

10000

Q Op-
tional

Q is the ratio of center frequency to bandwidth 0.01 -
18.0

0.7

gain Re-
quired

Values greater than 1.0 will boost the high frequencies, values less than
1.0 will attenuate them.

0 - 1.0 1.0

Gain effect

Applies a volume boost or cut to the output signal.

Example:

<DecentSampler>
<effects>
<effect type="gain" level="-6" />

</effects>
</DecentSampler>

Attributes:

At-
tribute

Type De-
fault

Valid
Range

type Re-
quired

Must be gain gain

level Re-
quired

The amount of gain to be applied expressed in decibels. In other words, gain
of -6dB reduces sound by 50%

0 -99 - 24

18 Chapter 1. Contents

DecentSampler, Release 1.11

Reverb effect

Example:

<DecentSampler>
<effects>
<effect type="reverb" roomSize="" damping="" wetLevel="" />

</effects>
</DecentSampler>

Attributes:

Attribute Type Valid Range De-
fault

type Re-
quired

Must be reverb reverb

roomSize Op-
tional

The reverb “room size” 0 - 1.0, where 1.0 is big, 0 is small. 0.7

damping Op-
tional

The reverb damping level 0 - 1.0, where 0 is not damped, 1.0 is fully
damped.

0.3

wetLevel Op-
tional

The volume of reverb sig-
nal

0 - 1.0 0

Delay effect

A simple delay effect that can be controlled either in seconds or using musical time increments based on the host tempo.
For a complete explanation of how to use tempo-syncing, see here.

Attributes:

1.4. The <effects> element 19

https://www.decentsamples.com/2024/02/08/for-sample-creators-how-to-add-tempo-synced-delay-to-your-instruments/

DecentSampler, Release 1.11

At-
tribute

Type Valid
Range

De-
fault

type Re-
quired

Must be delay delay

delayTimeFormatOp-
tional

Determines whether the delay will be synced to DAW tempo or not, as well as what
format you will be using for the delayTime parameter. There are two possible values:
1) seconds, which is the default, means that delayTimewill be specified in seconds
and will not change when the DAW tempo changes; 2) musical_time means that
delay time will be specified using an integer value generated by a control which is
setup to use the musical_time valueType parameter. In order for this to work, you
will need to be using the plug-in within a DAW that provides a tempo to the plug-in.

seconds,
musical_time

seconds

delayTimeOp-
tional

The delay time in seconds 0 - 20.0 0.7

feedbackOp-
tional

The feedback level. 0 - 1.0,
where
0 is no
feed-
back,
1.0 is
max
feed-
back.

0.2

stereoOffsetOp-
tional

The parameter allows you to introduce delay variations between the left and right
channels. Half of this amount is subtracted from the left channel’s delay time and
half of this amount is added to the right channel’s delay time. For example, if the
delayTime is 0.5 seconds and the stereoOffset is 0.02 s, then the actual left chan-
nel delay time will be 0.49s and the actual right channel delay time will be 0.51s so
that the two channels are offset by 0.02 seconds.

-10 -
10

0

wetLevelOp-
tional

The volume of the delay signal 0 - 1.0 0.5

Example of using the delay effect when specifying time in seconds:

<DecentSampler>
<effects>
<effect type="delay" delayTime="0.5" stereoOffset="0.01" feedback="0.2" wetLevel="0.5

→˓" />
</effects>

</DecentSampler>

Example of using the delay effect when specifying time in musical time:

<DecentSampler>
<ui>
<tab>
<labeled-knob x="180" y="40" label="Delay Time" valueType="musical_time"

minValue="0" maxValue="20" value="10" defaultValue="10">
<binding type="effect" level="instrument" position="0" parameter="FX_DELAY_TIME"␣

→˓/>
</labeled-knob>

</tab>
</ui>

(continues on next page)

20 Chapter 1. Contents

DecentSampler, Release 1.11

(continued from previous page)

<effects>
<effect type="delay" delayTimeFormat="musical_time" delayTime="10" stereoOffset="0.01

→˓"
feedback="0.3" wetLevel="0.5" />

</effects>
</DecentSampler>

Chorus effect

Example:

<DecentSampler>
<effects>
<effect type="chorus" mix="0.5" modDepth="0.2" modRate="0.2"/>

</effects>
</DecentSampler>

Attributes:

At-
tribute

Type Valid Range De-
fault

type Re-
quired

Must be chorus chorus

mix Op-
tional

The wet/dry mix which controls how much of
the chorus signal we hear

0 - 1.0, where 1.0 is just chorus, 0 is
just dry signal.

0.5

modDepthOp-
tional

The modulation depth of the effect 0 - 1.0, where 0 is no modulation, 1.0
is max modulation.

0.2

modRate Op-
tional

The modulation speed in Hz. 0 - 10.0 0.2

Phaser effect

Example:

<DecentSampler>
<effects>
<effect type="phaser" mix="0.5" modDepth="0.2" modRate="0.2" centerFrequency="400"␣

→˓feedback="0.7" />
</effects>

</DecentSampler>

Attributes:

1.4. The <effects> element 21

DecentSampler, Release 1.11

Attribute Type Valid Range De-
fault

type Re-
quired

Must be phaser phaser

mix Op-
tional

The wet/dry mix which controls how much
of the chorus signal we hear

0 - 1.0, where 1.0 is just chorus, 0 is
just dry signal.

0.5

modDepth Op-
tional

The modulation depth of the effect 0 - 1.0, where 0 is no modulation,
1.0 is max modulation.

0.2

modRate Op-
tional

The modulation speed in Hz. 0 - 10.0 0.2

centerFrequencyOp-
tional

The center frequency (in Hz) of the phaser
all-pass filters modulation

0 - 1.0 400

feedback Op-
tional

Sets the feedback volume of the phaser. -1 - 1.0 0.7

Convolution effect

This effect allows you to use a convolution reverb or amp simulation to your sample library. Depending on the length
of the impulse response, the convolution effect can use substantial CPU, so you’ll definitely want to do some testing
both with and without the convolution effect turned on.

Example:

<DecentSampler>
<effects>
<effect type="convolution" mix="0.5" irFile="Samples/Hall 3.wav" />

</effects>
</DecentSampler>

Attributes:

At-
tribute

Type Valid Range De-
fault

type Re-
quired

Must be convolution convolution

mix Op-
tional

The wet/dry mix controls how much of the con-
volution signal we hear

0 - 1.0, where 1.0 is just convolution,
0 is just dry signal.

0.5

irFile Re-
quired

The path of the WAV or AIFF to use as an Im-
pulse Response (IR) file

String No de-
fault

Wave Folder effect

Introduced in version 1.7.2. This effect allows you to fold a waveform back on itself. This is very useful for generating
additional harmonic content.

Attributes:

22 Chapter 1. Contents

DecentSampler, Release 1.11

At-
tribute

Type Valid Range De-
fault

type Re-
quired

Must be wave_folder wave_folder

drive Op-
tional

The volume of the input signal 1 - 100, where 100 means the signal is amplified by a
factor of 100 and 1 means no amplification is applied

1

thresholdOp-
tional

The amplitude above which
wave folding should take place

0 - 10.0 0.25

Because wave folding tends to sound better when applied on a per-voice basis, it usually makes sense to set up the wave
folder at the group level (separate group effects get created for each keypress). Example:

<DecentSampler pluginVersion="1">
<ui>
<tab>
<labeled-knob x="180" y="40" label="Drive" type="float" minValue="1" maxValue="100

→˓" textColor="FF000000" value="1">
<binding type="effect" level="group" groupIndex="0" effectIndex="0" parameter=

→˓"FX_DRIVE" translation="linear" />
</labeled-knob>
<labeled-knob x="280" y="40" label="Threshold" type="float" minValue="0" maxValue=

→˓"1" value="1" textColor="FF000000">
<binding type="effect" level="group" groupIndex="0" effectIndex="0" parameter=

→˓"FX_THRESHOLD" translation="linear" />
</labeled-knob>

</tab>
</ui>
<groups>
<group>

<!-- Samples go here. -->
<effects>

<effect type="wave_folder" drive="1" threshold="1" />
</effects>

</group>
</groups>

Wave Shaper effect

Introduced in version 1.7.2. This effect allows you to distort an audio signal. This is very useful for generating additional
harmonic content.

Attributes:

1.4. The <effects> element 23

DecentSampler, Release 1.11

At-
tribute

Type Valid Range De-
fault

type Re-
quired

Must be wave_shaper wave_folder

drive Op-
tional

The amount of distortion. This really just controls
the volume of the input signal. The volume of the
input signal

1 - 1000, where 1000 means the signal
is amplified by a factor of 1000 and 1
means no amplification is applied

1

driveBoostOp-
tional

Introduces an extra gain boost to the drive 0 - 1.0 1

outputLevelOp-
tional

The linear output level of the signal 0 - 1.0 0.1

highQualityOp-
tional

Whether or not oversampling is performed. Over-
sampling sounds better, but it’s CPU intensive. If
you want to save CPU, set this to false.

true, false true

Because wave shaping tends to sound better when applied on a per-voice basis, it usually makes sense to set up the
wave shaper at the group level (separate group effects get created for each keypress). Example:

<DecentSampler pluginVersion="1">
<ui>
<tab>
<labeled-knob x="180" y="40" label="Drive" type="float" minValue="1" maxValue="40"␣

→˓textColor="FF000000" value="0.5473124980926514">
<binding type="effect" level="group" groupIndex="0" effectIndex="0" parameter=

→˓"FX_DRIVE" translation="linear"/>
</labeled-knob>
<labeled-knob x="280" y="40" label="Drive Boost" type="float" minValue="0"␣

→˓maxValue="1" value="0.328312486410141" textColor="FF000000">
<binding type="effect" level="group" groupIndex="0" effectIndex="0" parameter=

→˓"FX_DRIVE_BOOST" translation="linear"/>
</labeled-knob>
<labeled-knob x="380" y="40" label="Output Lvl" type="float" minValue="0" maxValue=

→˓"1" value="0.328312486410141" textColor="FF000000">
<binding type="effect" level="group" groupIndex="0" effectIndex="0" parameter=

→˓"FX_OUTPUT_LEVEL" translation="linear"/>
</labeled-knob>

</tab>
</ui>
<groups>
<group>

<!-- Samples go here. -->
<effects>
<effect type="wave_shaper" drive="0.5473124980926514" shape="0.328312486410141"␣

→˓outputLevel="0.1"/>
</effects>

</group>
</groups>

24 Chapter 1. Contents

DecentSampler, Release 1.11

1.5 The <midi> element

MIDI mappings can be added to your instrument by adding a <midi> element right below your top-level
<DecentSampler> element.

1.5.1 The <cc> element

Within the <midi> element, you can have any number of <cc> elements. These allow you to map changes in incoming
continuous controller messages to specific parameters of your instrument. To use this functionality, you’ll want to add
a separate <cc> element for each CC number you would like to respond to. The <cc> element has a single required
attribute number="" which specifies the number (from 0 to 127) of the continuous controller you would like to listen
on. Beneath the <cc> element, you can have any number of bindings.

<midi>
<cc number="11">
<binding level="ui" type="control" position="0" parameter="VALUE" translation="linear

→˓"
translationOutputMin="0" translationOutputMax="1"/>

</cc>
<cc number="1">
<binding level="ui" type="control" position="1" parameter="VALUE" translation="linear

→˓"
translationOutputMin="0" translationOutputMax="1"/>

</cc>
</midi>

1.5.2 The <note> element

Within the <midi> element, you can have any number of <note> elements. These allow you to map specific notes
to specific parameters of your instrument. To use this functionality, you’ll want to add a separate <note> element for
each MIDI note or range of notes you would like to respond to.

Here are the attributes of the <note /> element:

• note (required): This attribute specifies the MIDI note number (from 0 to 127) you would like to listen on. You
can also specify ranges of notes by using a dash. For example note="24-35" would be used to specify bindings
for the range of notes 24 thorugh 35.

• enabled (optional): A true/false value that specifies whether this note listener is turned on.

• swallowNotes (optional): The bindings that live below this note listener are called before any notes are played.
By default, swallowNotes is false, which means that the keypress will then be received by the sampler. If
swallowNotes is true, the sampler will not receive the note. This is useful if you wish to prevent certain keys
from triggers notes.

It is possible to enable and disable a note listener by targeting the enabled attribute.

Beneath the <note> element, you can have any number of bindings. Here is an example of how keyswitches might be
set up:

<midi>
<note note="11" enabled="true">
<binding enabled="true" type="general" level="group" groupIndex="0" parameter=

→˓"ENABLED" translation="fixed_value" translationValue="true" />
(continues on next page)

1.5. The <midi> element 25

DecentSampler, Release 1.11

(continued from previous page)

<binding enabled="true" type="general" level="group" groupIndex="1" parameter=
→˓"ENABLED" translation="fixed_value" translationValue="false" />
</note>
<note note="12" enabled="true">
<binding enabled="true" type="general" level="group" groupIndex="0" parameter=

→˓"ENABLED" translation="fixed_value" translationValue="false" />
<binding enabled="true" type="general" level="group" groupIndex="1" parameter=

→˓"ENABLED" translation="fixed_value" translationValue="true" />
</note>

</midi>

In the above keyswitch example, MIDI note 11 turns on group 0 and turns off group 1, whereas MIDI note 12 does the
opposite. Note the use of the fixed_value translation type.

Bindings within the <midi> section

The bindings that the <cc> and <note> element listens on are the same as those used by the UI controls. See Appendix
B for a complete description of these.

If you have a UI control mapped to the same internal parameter as a MIDI mapping, you’ll want to have your MIDI
mapping control the UI control instead of the parameter directly. The benefit of doing this is that, as the MIDI CC input
is received, the UI control will be updated as well as the desired internal parameter.

The way to accomplish this is to make use of the labeled_knob or control binding types (control was introduced
in version 1.1.7) as follows:

<binding level="ui" type="control" position="0" parameter="VALUE" translation="linear"␣
→˓translationOutputMin="0" translationOutputMax="1"/>

You’ll notice that the control type has a level value of ui and a parameter value of VALUE. Another thing to notice
is the position="" parameter. This contains the 0-based index of the control to be modified. NOTE: The indexes of
the parameter list includes all UI controls, including <label> and menu controls, so you’ll want to account for
that when calculating your positions.

An example of changing a menu option based on a MIDI note (keyswitch) would look like this:

<midi>
<note note="11">
<binding type="control" level="ui" position="1" parameter="VALUE" translation="fixed_

→˓value" translationValue="1" />
</note>
<note note="12">
<binding type="control" level="ui" position="1" parameter="VALUE" translation="fixed_

→˓value" translationValue="2" />
</note>

</midi>

26 Chapter 1. Contents

DecentSampler, Release 1.11

1.6 The <noteSequences> element

As of 1.11.1, DecentSampler has a built-in note sequencer. It can be mapped to keys so that clusters of notes are played
every time certain keys are pressed. It can also be mapped to UI controls such as buttons.

The <noteSequences> element is how you specify note sequences that can be used by this playback engine. There
should be exactly one <noteSequences> element in each <DecentSampler> file.

The <noteSequences> element can contain one or more <sequence> elements:

1.6.1 The <sequence> element

The <sequence> element has the following attributes:

• name (optional): An optional descriptive name for the sequence. This is only used in the sample editor UI to
help you identify the sequence.

• length (required): The length of the sequence in beats. This is a floating point number.

• rate (optional): The rate at which the sequence is played. This is a floating point number. The default is 1.0.

The <sequence> element can contain one or more <note> elements:

The <note> element

The <note> element has the following attributes:

• position (required): The position of the note in the sequence, in beats. This is a whole number.

• velocity (required): The velocity of the note. This is a floating point number between 0 and 1.

• note (required): The MIDI note number of the note.

• length (required): The length of the note in beats. This is a whole number.

This is an an example showing the strum from an Omnichord:

<noteSequences>
<sequence name="Maj1Slow" length="768.0" rate="96">

<note position="0" velocity="1" note="48" length="768"/>
<note position="11" velocity="1" note="52" length="757"/>
<note position="29" velocity="1" note="55" length="739"/>
<note position="46" velocity="1" note="60" length="722"/>
<note position="63" velocity="1" note="64" length="705"/>
<note position="81" velocity="1" note="67" length="687"/>
<note position="99" velocity="1" note="72" length="669"/>
<note position="117" velocity="1" note="76" length="651"/>
<note position="134" velocity="1" note="79" length="634"/>
<note position="153" velocity="1" note="84" length="615"/>
<note position="171" velocity="1" note="88" length="597"/>
<note position="192" velocity="1" note="91" length="576"/>

</sequence>
</noteSequences>

For a full discussion of how to use note sequences, see the tutorial on how to use note sequences.

1.6. The <noteSequences> element 27

DecentSampler, Release 1.11

1.7 The <modulators> element

Version 1.6.0 of Decent Sampler officially introduces the new <modulators> section into the .dspreset format.
This section lives below the top-level <DecentSampler> element and it is where all modulators for the entire sample
library live.

<DecentSampler>
<modulators>

<!-- Your modulators go here. -->
</modulators>

</DecentSampler>

1.7.1 The <lfo> element

Underneath the <modulators> section, you can have any number of different LFOs, which are defined using an <lfo>
element, for example:

<modulators>1
<lfo shape="sine" frequency="2" modAmount="1.0"></lfo>

</modulators>

This element has the following attributes:

• shape: controls the oscillator shape. Possible values are sine, square, saw.

• frequency: The speed of the LFO in cycles per second. For example, a value of 10 would mean that the
waveform repeats ten times per second.

• modAmount: This value between 0 and 1 controls how much the modulation affects the things it is targeting. In
conventional terms, this is like the modulation depth. Default value: 1.0.

• scope: Whether or not this LFO exists for all notes or whether each keypress gets its own LFO. Possible values
are global (default for LFOs) and voice. If voice is chosen, a new LFO is started each time a new note is
pressed.

1.7.2 The <envelope> element

In addition to LFOs, you can also have additional ADSR envelopes. These can be useful for controlling group-level
effects, such as low-pass filters. If this is what you wish to achieve, make sure you check out the section on group-level
effects below.

To create an envelope, use an <envelope> element:

This element has the following attributes:

• attack: The length in seconds of the attack portion of the ADSR envelope

• decay: The length in seconds of the decay portion of the ADSR envelope

• sustain: The height of the sustain portion of the ADSR envelope. This is expressed as a value between 0 and
1.

• release: The length in seconds of the release portion of the ADSR envelope

• modAmount: This value between 0 and 1 controls how much the modulation affects the things it is targeting. In
conventional terms, this is like the modulation depth. Default value: 1.0.

28 Chapter 1. Contents

DecentSampler, Release 1.11

• scope: Whether or not this LFO exists for all notes or whether each keypress gets its own LFO. Possible values
are global and voice (default for envelopes). If voice is chosen, a new LFO is started each time a new note
is pressed.

1.7.3 How to use <binding>s in conjunction with modulators

In order to actually have your LFOs and envelopes do anything, you need to have bindings under them. If you are not
familiar with the concept of bindings, you may want to read this section then return here. Bindings tell the engine
which parameters the LFO should be affecting and how. Here is an example:

<modulators>
<lfo shape="sine" frequency="2" modAmount="1.0">

<!-- This binding modifies the frequency of a low-pass filter -->
<binding type="effect" level="instrument" effectIndex="0" parameter="FX_FILTER_

→˓FREQUENCY" modBehavior="add" translation="linear" translationOutputMin="0"␣
→˓translationOutputMax="2000.0" />
</lfo>

</modulators>

There are a few differences between bindings as they are used by knobs and the ones used by modulators. Specifically,
when you move a UI control that has a binding attached, the engine actually goes out and changes the value of the
parameter that is targeted by that binding. For example, if you have a knob that controls a lowpass filter’s cutoff
frequency, moving that knob will cause that actual frequency of that filter to change. In other words, the changes that
the knob is making on the underlying sample library are permanent. The same is also true for bindings associated with
MIDI continuous controllers.

Modulators, on the other hand, do not work this way. If a modulator (such as an LFO) changes its value, the engine
looks at the bindings associated with that LFO and then makes a list of temporary changes to the underlying data. When
it comes time to render out the effect, it consults both the permanent value and the temporary modulation values. As
a result of this difference in the way bindings are handled, only some parameters are “modulatable.” At time of press,
the following parameters are modulatable:

• All gain effect parameters

• All delay effect parameters

• All phaser effect parameters

• All filter effect parameters

• All reverb effect parameters

• All chorus effect parameters

• Group Volume

• Global Volume

• Group Pan

• Global Pan

• Group Tuning

• Global Tuning

1.7. The <modulators> element 29

https://www.decentsamples.com/wp-content/uploads/2020/06/format-documentation.html#appendix-b-the-binding-element

DecentSampler, Release 1.11

1.7.4 Modulator scope: global or voice-level

By default, all modulators will be created at the global level. This means that there will be exactly one modulator that
is shared by all voices. In many situations, such as an LFO modulating a single low-pass filter which is shared by all
of voices, this is often what we want.

But there are other situations where we don’t want our modulator to be global. In such cases we

<modulators>
<envelope attack="2" decay="0" sustain="1" release="0.5" modAmount="1.0">

<binding type="effect" level="group" groupIndex="0" effectIndex="0" parameter=
→˓"FX_FILTER_FREQUENCY" translation="linear" translationOutputMin="0"␣
→˓translationOutputMax="4000.0" modBehavior="add" />
</envelope>

</modulators>

Note that this voice-level modulator is now targeting a group level effect.

1.8 The <tags> element

The <tags> element lives right below your top-level <DecentSampler> element. It allows you to specify details about
the tags you use throughout your instrument. It is however not actually necessary to include a <tags> element for every
tag you use. You only need to create this if you want to specify additional details about your tags.

1.8.1 The <tag> element

Underneath the <tags> element, you can have any number of <tag> elements. These specify details for each individual
tag that you use throughout your sample mapping. Attributes:

Attribute Description

enabled (optional) A number for 0.0 to 1.0 that specifies the initial volume for a tag. Default: 1.0
volume (optional) A number for 0.0 to 1.0 that specifies the initial volume for a tag. Default: 1.0
polyphony (optional) A whole number that specifies the number of voices allowed for this tag.

1.9 Appendix A: The Color Format

Colors are represented throughout the dspreset files using an 8-digit ARGB color format. These are identical to web
color hex codes except with an additional 2-digit hex number in front of them. The first two digits are a hexadecimal
representation of alpha level with 00 being fully transparent, 80 being 50% transparent, and FF being fully opaque.

Examples:

• Black (solid): FF000000

• Black (90% transparency): E6000000

• Red (solid): FFFF0000

• Red (50% transparency): 80FF0000

• Blue (solid): FF0000FF

30 Chapter 1. Contents

DecentSampler, Release 1.11

1.10 Appendix B: The <binding> element

Adding a binding to a UI control, MIDI handler, or modulator tells the DecentSampler engine that it should take input
from a source and use it to change values in another part of the engine. An example of this would be a knob which
controls the volume of a group, a CC controller that changes an effect parameter, or an LFO that modulates an effect
parameter.

In order to set up a binding for a specific source, create a <binding> element within the source element.

In this example, a labeled knob is controlling the volume of the first group of samples (group 0):

<DecentSampler>
<ui>
<tab>
<labeled-knob x="420" y="100" label="RT" type="float" minValue="0" maxValue="1"␣

→˓value="0.3" textSize="20">
<binding type="amp" level="group" position="0" parameter="AMP_VOLUME"␣

→˓translation="linear" translationOutputMin="0" translationOutputMax="1.0" />
</labeled-knob>

</tab>
</ui>

</DecentSampler>

Here’s a full list of parameters for the <binding> element:

1.10. Appendix B: The <binding> element 31

DecentSampler, Release 1.11

At-
tribute

Description

type This tells the engine what type of parameter this is. Valid values are: “amp”, “effect”, “control”. Re-
quired

level Valid values are ui, instrument, group Re-
quired

position The specific 0-based index of the element to be modified by this binding. If you are targeting a
group, for example, the first group would be 0, the second group would be 1, etc.

Re-
quired

controlIndexWhen a binding is targeting a control, this is the same thing as the position attribute. It is a
specific 0-based index of the control to be modified by this binding. If you are targeting an group-
level effect, this would specified the group under which the effect lives.

Op-
tional

groupIndexWhen a binding is targeting a group, this is the same thing as the position attribute. It is a
specific 0-based index of the group to be modified by this binding. If you are targeting an group-
level effect, this would specified the group under which the effect lives.

Op-
tional

effectIndexWhen a binding is targeting an effect, this is the same thing as the position attribute. It is a
specific 0-based index of the effect to be modified by this binding.

Op-
tional

modulatorIndexWhen a binding is targeting a modulator, this is the same thing as the position attribute. It is a
specific 0-based index of the modulator to be modified by this binding.

Op-
tional

tags A comma-separated list of tags to be modified by this binding. This allows you to set values for
multiple groups at once by targeting a tag that is assigned to the groups.

Op-
tional

enabled A value that turns the binding on and off. Valid values are: true, false. Op-
tional

identifierA string identifying the specific parameter that you wish to change. If you are modulating based
on tags, you would put the tag you are targeting here. See Appendix D for example.

Re-
quired

parameterA token describing the specific kind of parameter that you wish to change. A list of controller
parameters are below.

Re-
quired

translationValid values are fixed_value, linear and table. Explanation of both translation modes is in
a separate section below. Default: linear

Op-
tional

translationOutputMinThis is the min value this binding should send to the target parameter. This is only looked at if
translation is set to linear.

Op-
tional

translationOutputMaxThis is the max value this binding should send to the target parameter. This is only looked at if
translation is set to linear.

Op-
tional

translationReversedValid values are true and false. Default: false. This is only looked at if translation is set to
linear.

Op-
tional

translationTableA list of input-output pairs that make up the translation table. The input and output are separated
by commas. The groups of coordinates themselves are separated by semi-colons. Default: 0,0;
1,1. You must have at least two coordinates in your list. This is only looked at if translation is set
to table.

Op-
tional

translationValueThe value that should be passed along when translation is set to fixed_value. Op-
tional

32 Chapter 1. Contents

DecentSampler, Release 1.11

1.10.1 Binding Parameters for Targeting Note Sequences

A special set of binding attributes exist for targeting note sequences:

Attribute Description Default Required
seqIndex A 0-based index of a sequence underneath the <noteSequences> sec-

tion
None Required

seqTriggerBehaviorWhat the binding should do with the sequence in question. Valid values
are on (start playing the sequence), off (stop playing the sequence),
midi_key (special value that will cause the binding to follow a specific
MIDI key note binding)

midi_key Optional

seqPlayerIdentifierAn identifier used for tracking the state of a sequence. This value can
be any sequence of numbers or letters.

None Required when
seqTriggerBehavior
is on or off

seqTrackMidiInputVelocityWhether or not the sequence should respect the velocity of the incom-
ing MIDI note. This can only be used when the sequence is being trig-
gered by a MIDI note binding. Value should be a floating point number
from 0.0 to 1.

Optional

seqTransposeTranspose the notes in the sequence by an arbitrary number of half
steps. Value should be a floating point number from -36 to 36.

Any se-
quence of
numbers
of letters

Optional

seqTransposeWithRootNoteTranspose the notes in the sequence relative to the pitch of the incoming
MIDI note. This can only be used when the sequence is being triggered
by a MIDI note binding. Value should be a floating point number from
0 to 127.

Any se-
quence of
numbers
of letters

Optional

seqPlaybackRateThe speed of playback. Value should be a floating point number from
0.001 to 10000.

1.0 Optional

seqLoopModeValid values are: forward, reverse, random, random_no_repeat,
no_loop

forward Optional

1.10.2 Controllable Parameters

This is a list of parameters that can be used in conjunction with the <binding> element above. NOTE: The table below
scrolls to the right.

Description type level parameter Valid Range Modulatable Additional required parameters
Global Volume amp instrument AMP_VOLUME 0.0 - 16.0 No N/A
Global Tuning amp instrument GLOBAL_TUNING -36.0 - 36.0 No N/A
Global Pan amp instrument PAN -100 - 100 No N/A
Sample Start (see note 2 below) general instrument or group SAMPLE_START 0 - last sample No This value will be in number of raw samples where 0 is the beginning. See note 2 below.
Sample End (see note 2 below) general instrument or group SAMPLE_END 0 - last sample No This value will be in number of raw samples where 0 is the beginning. See note 2 below.
Loop Start (see note 2 below) general instrument or group LOOP_START 0 - last sample No This value will be in number of raw samples where 0 is the beginning. See note 2 below.
Loop End (see note 2 below) general instrument or group LOOP_END 0 - last sample No This value will be in number of raw samples where 0 is the beginning. See note 2 below.
Amplitude Velocity Tracking amp instrument AMP_VEL_TRACK 0.0 - 1.0 No N/A
Global Amp Envelope Attack amp instrument ENV_ATTACK 0.0 - 10.0 No N/A
Global Amp Envelope Attack Curve Shape amp instrument ENV_ATTACK_CURVE -100 - 100 No N/A
Global Amp Envelope Decay amp instrument ENV_DECAY 0.0 - 25.0 No N/A
Global Amp Envelope Decay Curve Shape amp instrument ENV_DECAY_CURVE -100 - 100 No N/A
Global Amp Envelope Sustain amp instrument ENV_SUSTAIN 0.0 - 1.0 No N/A

continues on next page

1.10. Appendix B: The <binding> element 33

DecentSampler, Release 1.11

Table 1 – continued from previous page
Description type level parameter Valid Range Modulatable Additional required parameters
Global Amp Envelope Release amp instrument ENV_RELEASE 0.0 - 25.0 No N/A
Global Amp Envelope Release Curve Shape amp instrument ENV_RELEASE_CURVE -100 - 100 No N/A
Glide/Portamento Time amp instrument GLIDE_TIME 0.0 - 10.0 No N/A
Effect Enabled (all effects) effect instrument ENABLED false, true Yes effectIndex or position contains the 0-based index of the effect
Convolution Mix Level effect instrument FX_MIX 0.0 - 1.0 Yes effectIndex or position contains the 0-based index of the effect
Convolution IR File effect instrument FX_IR_FILE Text No effectIndex or position contains the 0-based index of the effect
Filter Frequency (for several filters) effect instrument FX_FILTER_FREQUENCY 0.0 - 22000.0 Yes effectIndex or position contains the 0-based index of the effect
Peak or Notch Filter Q effect instrument FX_FILTER_Q 0.01 - 18.0 Yes effectIndex or position contains the 0-based index of the effect
Peak or Notch Filter Gain effect instrument FX_FILTER_GAIN 0.0 - 10.0 Yes effectIndex or position contains the 0-based index of the effect
Low-pass or High-pass Filter Resonance effect instrument FX_FILTER_RESONANCE 0.0 - 5.0 Yes effectIndex or position contains the 0-based index of the effect
Reverb Wet Level effect instrument FX_REVERB_WET_LEVEL 0.0 - 1.0 Yes effectIndex or position contains the 0-based index of the effect
Reverb Room Size effect instrument FX_REVERB_ROOM_SIZE 0.0 - 1.0 Yes effectIndex or position contains the 0-based index of the effect
Reverb Damping effect instrument FX_REVERB_DAMPING 0.0 - 1.0 Yes effectIndex or position contains the 0-based index of the effect
Chorus/Phaser/Convolution Mix Level effect instrument FX_MIX 0.0 - 1.0 Yes effectIndex or position contains the 0-based index of the effect
Chorus/Phaser Mod Depth effect instrument FX_MOD_DEPTH 0.0 - 1.0 Yes effectIndex or position contains the 0-based index of the effect
Chorus/Phaser Mod Rate effect instrument FX_MOD_RATE 0.0 - 10.0 Yes effectIndex or position contains the 0-based index of the effect
Phaser Center Frequency effect instrument FX_CENTER_FREQUENCY 0.0 - 22000.0 Yes effectIndex or position contains the 0-based index of the effect
Phaser/Delay Feedback effect instrument FX_FEEDBACK 0.0 - 1.0 Yes effectIndex or position contains the 0-based index of the effect
Delay Time effect instrument FX_DELAY_TIME 0.0 - 1.0 Yes effectIndex or position contains the 0-based index of the effect
Delay Time Format effect instrument FX_DELAY_TIME_FORMAT seconds, musical_time Yes effectIndex or position contains the 0-based index of the effect
Delay Stereo Offset effect instrument FX_STEREO_OFFSET 0.0 - 1.0 Yes effectIndex or position contains the 0-based index of the effect
Delay Wet Level effect instrument FX_WET_LEVEL 0.0 - 1.0 Yes effectIndex or position contains the 0-based index of the effect
Gain Level effect instrument LEVEL 0.0 - 8.0 Yes groupIndex or position contains the 0-based index of the group
Wave Folder Drive Level effect instrument FX_DRIVE 1 - 100 Yes groupIndex or position contains the 0-based index of the group
Wave Folder Threshold effect instrument FX_THRESHOLD 1 - 100 Yes groupIndex or position contains the 0-based index of the group
Wave Shaper Drive Level effect instrument FX_DRIVE 0.0 - 1000.0 Yes groupIndex or position contains the 0-based index of the group
Wave Shaper Output Level effect instrument FX_OUTPUT_LEVEL 0.0 - 8.0 Yes groupIndex or position contains the 0-based index of the group
Wave Shaper Drive Boost effect instrument FX_DRIVE_BOOST 0.0 - 1.0 Yes groupIndex or position contains the 0-based index of the group
Group Enabled / Disabled amp group ENABLED true, false groupIndex or position contains the 0-based index of the group
Group Volume amp group AMP_VOLUME 0.0 - 16.0 Yes groupIndex or position contains the 0-based index of the group
Group Tuning amp group GROUP_TUNING -36.0 - 36.0 Yes groupIndex or position contains the 0-based index of the group
Pan amp group PAN -100 - 100 Yes groupIndex or position contains the 0-based index of the group
Amplitude Velocity Tracking amp group AMP_VEL_TRACK 0.0 - 1.0 groupIndex or position contains the 0-based index of the group
Group Amp Envelope Attack amp group ENV_ATTACK 0.0 - 10.0 groupIndex or position contains the 0-based index of the group
Group Amp Envelope Decay amp group ENV_DECAY 0.0 - 25.0 groupIndex or position contains the 0-based index of the group
Group Amp Envelope Sustain amp group ENV_SUSTAIN 0.0 - 1.0 groupIndex or position contains the 0-based index of the group
Group Amp Envelope Release amp group ENV_RELEASE 0.0 - 25.0 groupIndex or position contains the 0-based index of the group
Group Glide/Portamento Time amp group GLIDE_TIME 0.0 - 10.0 groupIndex or position contains the 0-based index of the group
Tag Enabled amp tag TAG_ENABLED true, false identifier contains the tag name
Tag Volume amp tag TAG_VOLUME 0.0 - 16.0 identifier contains the tag name
MIDI Note Mapping Enabled midi note ENABLED Any number noteIndex that contains the 0-based index of the note within the <midi> element
MIDI Note Binding Enabled midi note_binding ENABLED Any number noteIndex that contains the 0-based index of the note within the <midi> element and bindingIndex that contains the index of the binding being referenced.
MIDI Note Binding Change seqIndex midi note_binding SEQ_INDEX Any whole number noteIndex that contains the 0-based index of the note within the <midi> element and bindingIndex that contains the index of the binding being referenced.
MIDI Note Binding Change seqLoopMode midi note_binding SEQ_LOOP_MODE forward, reverse, random, random_no_repeat, no_loop noteIndex that contains the 0-based index of the note within the <midi> element and bindingIndex that contains the index of the binding being referenced.
MIDI Note Binding Change seqTransposeWithRootNote midi note_binding SEQ_TRANSPOSE_WITH_ROOT_NOTE 0 - 128 noteIndex that contains the 0-based index of the note within the <midi> element and bindingIndex that contains the index of the binding being referenced.
MIDI Note Binding Change seqPlaybackRate midi note_binding SEQ_PLAYBACK_RATE 0.001 - 10000 noteIndex that contains the 0-based index of the note within the <midi> element and bindingIndex that contains the index of the binding being referenced.
MIDI Note Binding Change seqTrackMidiInputVelocity midi note_binding SEQ_TRACK_MIDI_INPUT_VELOCITY 0.0 - 1.0 noteIndex that contains the 0-based index of the note within the <midi> element and bindingIndex that contains the index of the binding being referenced.
MIDI Note Binding Change seqTranspose midi note_binding SEQ_TRANSPOSE -36 - 36 noteIndex that contains the 0-based index of the note within the <midi> element and bindingIndex that contains the index of the binding being referenced.
MIDI Velocity Binding Enabled midi velocity_binding ENABLED Any number bindingIndex that contains the index of the binding being referenced.
UI Button State Binding Enabled button_state_binding ui ENABLED true, false controlIndex contains the 0-based index of the control in question (see note 1 below), stateIndex contains the 0-based index of the state in question, and bindingIndex that contains the index of the binding being referenced.

continues on next page

34 Chapter 1. Contents

DecentSampler, Release 1.11

Table 1 – continued from previous page
Description type level parameter Valid Range Modulatable Additional required parameters
UI Control Enabled control ui ENABLED true, false controlIndex or position contains the 0-based index of the control in question (see note 1 below)
UI Control Visibile control ui VISIBLE true, false controlIndex or position contains the 0-based index of the control in question (see note 1 below)
UI Control Value control ui VALUE Any number controlIndex or position contains the 0-based index of the control in question (see note 1 below)
UI Control Text control ui TEXT Text controlIndex or position contains the 0-based index of the control in question (see note 1 below)
UI Control Minimum Value control ui MIN_VALUE Any number controlIndex or position contains the 0-based index of the control in question (see note 1 below)
UI Control Maximum Value control ui MAX_VALUE Any number controlIndex or position contains the 0-based index of the control in question (see note 1 below)
UI Control Value Type control ui VALUE_TYPE float, integer, musical_time controlIndex or position contains the 0-based index of the control in question (see note 1 below)
UI Image Control Path control ui PATH Text controlIndex or position contains the 0-based index of the control in question (see note 1 below)
UI Keyboard Coloring Enable / Disable keyboard_color ui. ENABLED true, false colorIndex that contains the 0-based index of the color element within the <keyboard> element
Modulator Amount (Depth) modulator instrument MOD_AMOUNT 0.0 - 1.0 modulatorIndex contains the 0-based index of the modulator in question
LFO Modulator Rate (or Frequency) modulator instrument FREQUENCY 0.0 - 22000.0 modulatorIndex contains the 0-based index of the modulator in question
Envelope Modulator Attack modulator instrument ENV_ATTACK 0.0 - 10.0 modulatorIndex contains the 0-based index of the modulator in question
Envelope Modulator Attack Curve Shape modulator instrument ENV_ATTACK_CURVE -100 - 100 modulatorIndex contains the 0-based index of the modulator in question
Envelope Modulator Decay modulator instrument ENV_DECAY 0.0 - 25.0 modulatorIndex contains the 0-based index of the modulator in question
Envelope Modulator Decay Curve Shape modulator instrument ENV_DECAY_CURVE -100 - 100 modulatorIndex contains the 0-based index of the modulator in question
Envelope Modulator Sustain modulator instrument ENV_SUSTAIN 0.0 - 1.0 modulatorIndex contains the 0-based index of the modulator in question
Envelope Modulator Release modulator instrument ENV_RELEASE 0.0 - 25.0 modulatorIndex contains the 0-based index of the modulator in question
Envelope Modulator Release Curve Shape modulator instrument ENV_RELEASE_CURVE -100 - 100 modulatorIndex contains the 0-based index of the modulator in question
Sequence Rate note_sequence instrument RATE 0.01 - 100 seqIndex contains the 0-based index of the note sequence in question
All Notes Off general instrument ALL_NOTES_OFF true

1. NOTE: The indexes of the parameter list also include UI controls that are not editable, such as <label> UI
controls, so you’ll want to account for that when calculating your positions.

Here’s a quick example:

If your UI’s <tab> section has the following elements under it: <label>, <control>,<label>,<control>.
The position indexes of the four elements will be 0, 1, 2, 3. Therefore, the indexes of the two <control>
elements will be 1 and 3, respectively.

2. NOTE: If your sample library manipulates start, end, loopStart, or loopEnd after a sample library’s initial
load, the sample playback engine must be in RAM/Memory mode (not disk streaming) or you will get very
unpredictable results. In order to enforce this, sample creators should use the playbackEngine attribute.

1.10.3 Translation Modes

There are currently three binding translation modes: linear, table, fixed_value

Mode #1: linear

linear mode allows values that come in to be scaled up or down before they get passed along to the binding’s target. If
you set your translation mode to linear you should also translationOutputMin and translationOutputMax.

Example usage:

<binding level="ui" type="control" position="0" parameter="value" translation="linear"
translationOutputMin="0" translationOutputMax="1"/>

1.10. Appendix B: The <binding> element 35

DecentSampler, Release 1.11

Mode #2: table

table mode allows you to transform the binding’s input in a more complex fashion before it gets passed along to the
binding’s target. If you set your translation mode to table you must define the translationTable parameter as well.
This consists of a series of input-output pairs, separated by semi-colons.

Mode #3: fixed_value

fixed_value mode allows you to completely disregard the input of a binding and instead always use a supplied value. In
order to use this translation mode, you must also specify a translationValue. This can be very useful when trying
to have menu options enable and disable groups. An example usage:

<binding type="general" level="group" position="1" parameter="ENABLED" translation=
→˓"fixed_value" translationValue="true" />

1.11 Appendix C: Boilerplate .dspreset File

<?xml version="1.0" encoding="UTF-8"?>
<DecentSampler minVersion="1.0.0">
<ui width="812" height="375" layoutMode="relative"

bgMode="top_left">
<tab name="main">
<labeled-knob x="445" y="75" width="90" textSize="16" textColor="AA000000"

trackForegroundColor="CC000000" trackBackgroundColor="66999999"
label="Attack" type="float" minValue="0.0" maxValue="4.0" value="0.01

→˓" >
<binding type="amp" level="instrument" position="0" parameter="ENV_ATTACK" />

</labeled-knob>
<labeled-knob x="515" y="75" width="90" textSize="16" textColor="AA000000"

trackForegroundColor="CC000000" trackBackgroundColor="66999999"
label="Release" type="float" minValue="0.0" maxValue="20.0" value="1

→˓" >
<binding type="amp" level="instrument" position="0" parameter="ENV_RELEASE" />

</labeled-knob>
<labeled-knob x="585" y="75" width="90" textSize="16" textColor="AA000000"

trackForegroundColor="CC000000" trackBackgroundColor="66999999"
label="Chorus" type="float" minValue="0.0" maxValue="1" value="0" >

<binding type="effect" level="instrument" position="1" parameter="FX_MIX" />
</labeled-knob>
<labeled-knob x="655" y="75" width="90" textSize="16" textColor="FF000000"

trackForegroundColor="CC000000" trackBackgroundColor="66999999"
label="Tone" type="float" minValue="0" maxValue="1" value="1">

<binding type="effect" level="instrument" position="0" parameter="FX_FILTER_
→˓FREQUENCY"

translation="table"
translationTable="0,33;0.3,150;0.4,450;0.5,1100;0.7,4100;0.9,11000;1.

→˓0001,22000"/>
</labeled-knob>
<labeled-knob x="725" y="75" width="90" textSize="16" textColor="AA000000"

trackForegroundColor="CC000000" trackBackgroundColor="66999999"
(continues on next page)

36 Chapter 1. Contents

DecentSampler, Release 1.11

(continued from previous page)

label="Reverb" type="percent" minValue="0" maxValue="100"
textColor="FF000000" value="50">

<binding type="effect" level="instrument" position="2"
parameter="FX_REVERB_WET_LEVEL" translation="linear"
translationOutputMin="0" translationOutputMax="1" />

</labeled-knob>
</tab>

</ui>
<groups attack="0.000" decay="25" sustain="1.0" release="0.430" volume="-3dB">
<group>
<sample loNote="21" hiNote="21" rootNote="21" path="DefaultPiano-21.aif"

length="805888"/>
<sample loNote="22" hiNote="33" rootNote="33" path="DefaultPiano-33.aif"

length="807552"/>
<sample loNote="34" hiNote="45" rootNote="45" path="DefaultPiano-45.aif"

length="759168"/>
<sample loNote="46" hiNote="57" rootNote="57" path="DefaultPiano-57.aif"

length="756480"/>
<sample loNote="58" hiNote="69" rootNote="69" path="DefaultPiano-69.aif"

length="758656"/>
<sample loNote="70" hiNote="77" rootNote="77" path="DefaultPiano-77.aif"

length="595328"/>
<sample loNote="78" hiNote="89" rootNote="89" path="DefaultPiano-89.aif"

length="457600"/>
<sample loNote="90" hiNote="96" rootNote="96" path="DefaultPiano-96.aif"

length="469888"/>
<sample loNote="94" hiNote="108" rootNote="108" path="DefaultPiano-108.aif"

length="75264"/>
</group>

</groups>
<effects>
<effect type="lowpass" frequency="22000.0"/>
<effect type="chorus" mix="0.0" modDepth="0.2" modRate="0.2" />
<effect type="reverb" wetLevel="0.5"/>

</effects>
<midi>
<!-- This causes MIDI CC 1 to control the 4th knob (cutoff) -->
<cc number="1">
<binding level="ui" type="control" parameter="VALUE" position="3"

translation="linear" translationOutputMin="0"
translationOutputMax="1" />

</cc>
</midi>

</DecentSampler>

1.11. Appendix C: Boilerplate .dspreset File 37

DecentSampler, Release 1.11

1.12 Useful Tutorials and Resources

1.12.1 UI Elements

How to Color the Keys of the On-Screen Keyboard

As of version 1.4.0, it is now possible to color the keys of the on-screen keyboard.

This can be useful for showing different ranges of notes that serve different purposes or highlighting notes used as
keyswitches. In order to implement colored keys, make use of the new <keyboard> and <color> elements as follows:

<DecentSampler>
<ui>

<!-- Other stuffhere -->
<keyboard>

<color loNote="36" hiNote="50" color="FF2C365E" />
<color loNote="51" hiNote="57" color="FF6D9DC5" />
<color loNote="58" hiNote="67" color="FFCCF3F5" />
<color loNote="68" hiNote="73" color="FFE8DA9B" />
<color loNote="74" hiNote="84" color="FFD19D61" />

</keyboard>
</ui>
<!-- Other stuff here -->

</DecentSampler>

By default, Decent Sampler highlights all of the notes that are mapped for a given sample. If you use the color keys
feature, this default highlighting will be turned off and it will be up to you to color whatever keys you want.

Full documentation for the color element is here.

38 Chapter 1. Contents

DecentSampler, Release 1.11

How to turn keyboard note coloring on and off using bindings

It also possible to programmically turn keyboard coloring on and off using bindings. Here’s an example of how to do
that:

<DecentSampler>
<ui>

<button name="Strum Enabled" x="464" y="82" width="14" height="14" style="image"␣
→˓value="1" visible="false">

<state name="Off" mainImage="Images/StrumsCheckboxUnchecked.png" hoverImage=
→˓"Images/StrumsCheckboxUnchecked.png" clickImage="Images/StrumsCheckboxUnchecked.png">

<binding level="ui" type="keyboard_color" colorIndex="0" parameter="ENABLED"␣
→˓translation="fixed_value" translationValue="false"/>

<binding level="ui" type="keyboard_color" colorIndex="1" parameter="ENABLED"␣
→˓translation="fixed_value" translationValue="false"/>

<binding level="ui" type="keyboard_color" colorIndex="2" parameter="ENABLED"␣
→˓translation="fixed_value" translationValue="false"/>

<binding level="ui" type="keyboard_color" colorIndex="3" parameter="ENABLED"␣
→˓translation="fixed_value" translationValue="false"/>

<binding level="ui" type="keyboard_color" colorIndex="4" parameter="ENABLED"␣
→˓translation="fixed_value" translationValue="false"/>

</state>
<state name="On" mainImage="Images/StrumsCheckboxChecked.png" hoverImage="Images/

→˓StrumsCheckboxChecked.png" clickImage="Images/StrumsCheckboxChecked.png">
<binding level="ui" type="keyboard_color" colorIndex="0" parameter="ENABLED"␣

→˓translation="fixed_value" translationValue="true"/>
<binding level="ui" type="keyboard_color" colorIndex="1" parameter="ENABLED"␣

→˓translation="fixed_value" translationValue="true"/>
<binding level="ui" type="keyboard_color" colorIndex="2" parameter="ENABLED"␣

→˓translation="fixed_value" translationValue="true"/>
<binding level="ui" type="keyboard_color" colorIndex="3" parameter="ENABLED"␣

→˓translation="fixed_value" translationValue="true"/>
<binding level="ui" type="keyboard_color" colorIndex="4" parameter="ENABLED"␣

→˓translation="fixed_value" translationValue="true"/>
</state>

</button>
<keyboard>

<color loNote="36" hiNote="50" color="FF2C365E" />
<color loNote="51" hiNote="57" color="FF6D9DC5" />
<color loNote="58" hiNote="67" color="FFCCF3F5" />
<color loNote="68" hiNote="73" color="FFE8DA9B" />
<color loNote="74" hiNote="84" color="FFD19D61" />

</keyboard>
</ui>
<!-- Other stuff here -->

</DecentSampler>

1.12. Useful Tutorials and Resources 39

DecentSampler, Release 1.11

How to add Dropdown Menus

Dropdown Menus

In order to implemented dropdown menus, use the new <menu> and <option> elements. The <menu> element defines
where the dropdown menu will show up in the ui, whereas the XML elements determine what menu options it has and
what if anything those options actually do:

<menu x="10" y="40" width="120" height="30" value="2">
<option name="Menu Option 1">
<!-- Turn on this group -->
<binding type="general" level="group" position="0" parameter="ENABLED"
translation="fixed_value" translationValue="true" />
<!-- Turn off this group -->
<binding type="general" level="group" position="1" parameter="ENABLED"
translation="fixed_value" translationValue="false" />

</option>
<option name="Menu Option 2">
<!-- Turn off this group -->
<binding type="general" level="group" position="0" parameter="ENABLED"
translation="fixed_value" translationValue="false" />
<!-- Turn on this group -->
<binding type="general" level="group" position="1" parameter="ENABLED"
translation="fixed_value" translationValue="true" />

</option>
</menu>

In this example, a menu is being used to switch between two groups (the first menu option turns group 0 on and group
1 off; the section option turns group 0 off and group 1 on). Full documentation for the new <menu> and <option>
elements is here.

The new fixed_value translation type

You’ll note, in the example above, there’s something new in the bindings: the four bindings elements have a
translation parameter of type fixed_value. This is a new translation type. Up until now, binding translation has
strictly been about taking an input parameter (such as a knob value or continuous controller amount) and translating
it so that it is useful for some other purpose (it’s our way of being able to do a little bit of math without having a
full-blown scripting language). This new fixed_value binding is different. It ignores the input value completely and
instead provides whatever is specified in the translationValue parameter. In this way, each menu option can have
hardcoded values that it provides its bindings when it is selected.

1.12.2 Sample Mapping and Effects

How to Use Note Sequences within your Sample Libraries

As of version 1.11.1, DecentSampler now supports embedding note sequences with your sample libraries. This means
that you can create patters or musical motifs that can be triggered either using MIDI or via the UI. This guide will show
you how to create a sample library with note sequences and how to trigger them using MIDI.

40 Chapter 1. Contents

DecentSampler, Release 1.11

Creating a sequence by hand

In this part of the guide, we will go over how to create a sequence by hand. This is useful if you want to create a
sequence that is simple, and if you want the XML for your sequence to continue to be easily edited by hand. The first
thing you need to do is add a <noteSequences> element to your <DecentSampler> file:

The <noteSequences> element

The <noteSequences> element is how you specify note sequences that can be used by this playback engine. There
should be exactly one <noteSequences> element in each <DecentSampler> file.

The <noteSequences> element can contain one or more <sequence> elements:

The <sequence> element

The <sequence> element has the following attributes:

• name (optional): An optional descriptive name for the sequence. This is only used in the sample editor UI to
help you identify the sequence.

• length (required): The length of the sequence in beats. This is a floating point number.

• rate (optional): The rate at which the sequence is played. This is a floating point number. The default is 1.0.

The <sequence> element can contain one or more <note> elements:

The <note> element

The <note> element has the following attributes:

• position (required): The position of the note in the sequence, in beats. This is a whole number.

• velocity (required): The velocity of the note. This is a floating point number between 0 and 1.

• note (required): The MIDI note number of the note.

• length (required): The length of the note in beats. This is a whole number.

An example sequence might looks like this:

<noteSequences>
<sequence name="Maj1Slow" length="16" rate="1">

<note position="0" velocity="1" note="48" length="16"/>
<note position="1" velocity="1" note="52" length="15"/>
<note position="2" velocity="1" note="55" length="14"/>
<note position="3" velocity="1" note="60" length="13"/>
<note position="4" velocity="1" note="64" length="12"/>
<note position="5" velocity="1" note="67" length="11"/>
<note position="6" velocity="1" note="72" length="10"/>
<note position="7" velocity="1" note="76" length="9"/>
<note position="8" velocity="1" note="79" length="8"/>
<note position="9" velocity="1" note="84" length="7"/>
<note position="10" velocity="1" note="88" length="6"/>
<note position="11" velocity="1" note="91" length="5"/>

(continues on next page)

1.12. Useful Tutorials and Resources 41

DecentSampler, Release 1.11

(continued from previous page)

</sequence>
</noteSequences>

Creating a sequence using the sample editor

Another way to create sequences is via MIDI. While the Decent Sampler preset editor does not have a sequence editor
built in, it does allow you to import MIDI files to create sequences. This means that you can use your favorite DAW
to create sequences and then import them into Decent Sampler. This list of steps assumes that already have a preset
created and that you are just looking to add sequences to it.

1. Create a MIDI sequence in your favorite DAW. Here is a sequence I created in Ableton Live:

2. Export the sequence as a MIDI file. The command for doing this will be different in every DAW. In Ableton
Live, you can do this by right-clicking on the MIDI clip and selecting Export MIDI Clip. . . .

3. Load your preset in Decent Sampler

4. Open the preset editor by going to File > Developer Tools > Preset Editor. . . . You can also get there by hitting
F12.

5. Once you’re in the preset editor, choose the File > Sequence Manager. . . menu item. A little box will pop up.
This is the sequence manager. It will be empty at first.

6. Click the Edit > Import MIDI File menu option, and select the MIDI file you created in step 2.

42 Chapter 1. Contents

DecentSampler, Release 1.11

You will be presented with a dialog box that will ask you whether you want to quantize your sequence. Once you click
OK, Decent Sampler will automatically convert the MIDI file into a sequence and add it to the sequence manager. You
can then use the sequence in your preset.

7. Close the sequence manager window and save your preset.

Triggering sequences using MIDI

In order to set up your preset so that specific notes trigger specific sequences, you’ll need to make use of the <midi>
element in your <DecentSampler> file. Underneath the <midi> element, you can define any number of <note>
elements. Each <note> element has the following attributes:

• note (required): The MIDI note number that will trigger the sequence. This can also be a range of notes, such
as 24-35.

• enabled (optional): A boolean value that determines whether the note handler is currently functional. The
default is true.

• swallowNotes (optional): A boolean value that determines whether the note handler should swallow the in-
coming MIDI note or pass it on to the playback engine. The default is false, but most people will want to set
this to true.

Within your <note> element, you can define any number of bindings. The bindings we will be using will look some-
thing like this:

<DecentSampler pluginVersion="1" minVersion="1.11.1">
<midi>
<!-- We define a listener for the notes 24 through 35... -->
<note note="24-35" enabled="true" swallowNotes="true">
<binding enabled="true" level="instrument" type="note_sequence" seqIndex="0"␣

→˓seqLoopMode="forward" seqTriggerBehavior="midi_key" seqTransposeWithRootNote="12"␣
→˓seqTrackMidiInputVelocity="1.0" seqPlaybackRate="1"/>
</note>

</midi>
<noteSequences>

(continues on next page)

1.12. Useful Tutorials and Resources 43

DecentSampler, Release 1.11

(continued from previous page)

<sequence name="Maj1Slow" length="4" rate="1">
<note position="0" velocity="1" note="48" length="1"/>
<note position="1" velocity="1" note="52" length="1"/>
<note position="2" velocity="1" note="55" length="1"/>
<note position="3" velocity="1" note="60" length="1"/>

</sequence>
</noteSequences>

</DecentSampler>

Here is a description of all of the useful attributes for the <binding> element:

• enabled (optional): A boolean value that determines whether the binding is currently functional. The default is
true.

• level (required): When triggering note sequences, this should always be instrument, as these all live at the
instrument level.

• type (required): The type of binding. When triggering note sequences, this should always be note_sequence.

• seqIndex (required): The index of the sequence in the sequence manager that you want to trigger. This is a
zero-based index.

• seqLoopMode (optional): The loop mode of the sequence. This can be forward, reverse, random, or
no_loop.

• seqTriggerBehavior (optional): The trigger behavior of the sequence. this can be midi_key, on, or off.
When you are triggering a sequence using a MIDI key, this should always be midi_key.

• seqTransposeWithRootNote (optional): The amount by which the sequence should be transposed when it is
triggered, relative to the incoming note. For example, if you set this to 24, and the MIDI note that triggered it
was 28, the sequence would be transposed up by 4 semitones, since 28 - 24 = 4.

• seqTrackMidiInputVelocity (optional): A floating point value between 0 and 1 that determines whether the
sequence should track the velocity of the incoming MIDI note. The default is 1.0.

• seqPlaybackRate (optional): A floating point value that determines the rate at which the sequence should be
played. The default is 1.0.

You can download the example file here and try it out for yourself. You will want to look in the
example-006-working-with-note-sequences/Example 6A - Triggering Sequences Using MIDI.
dspreset file.

Triggering note sequences using the UI

In order to trigger note sequences using the UI, you will need to make use of the <ui>, <tab>, and various UI controls
elements in your <DecentSampler> file. This tutorial assumes you already have something like this set up. If you
don’t, you can refer to the <ui> element section for more information.

<DecentSampler pluginVersion="1" minVersion="1.11.1">
<ui>
<tab>
<!-- This button has two states -->
<button x="200" y="17" width="100" height="30" style="text" parameterName=

→˓"Sequencer Enabled" value="0" defaultValue="0">
<!-- In the Off state, we silence any sequence that might be playing that has␣

→˓the identifier "sequence_button_1" -->
(continues on next page)

44 Chapter 1. Contents

https://github.com/DecentSamples/DecentSampler-Sample-Library-Examples/releases/

DecentSampler, Release 1.11

(continued from previous page)

<state name="Off">
<binding level="instrument" type="note_sequence" seqIndex="0"␣

→˓seqTriggerBehavior="off" seqPlayerIdentifier="sequence_button_1"/>
</state>
<!-- In the `On` state, we tell the engine to play the sequence "Maj1Slow"␣

→˓(identifier as sequence with index 0).
We will specify that it should be tracked internally using the identifier

→˓"sequence_button_1". That fact that we are specify this idenfitier
now will allow us to turn the sequence off later. -->
<state name="On">
<binding level="instrument" type="note_sequence" seqIndex="0" seqLoopMode=

→˓"forward" seqTriggerBehavior="on" seqTrackMidiInputVelocity="1.0" seqPlaybackRate="1"␣
→˓seqTranspose="12" seqPlayerIdentifier="sequence_button_1"/>

</state>
</button>

</tab>
</ui>
<noteSequences>
<sequence name="Maj1Slow" length="4" rate="1">

<note position="0" velocity="1" note="48" length="1"/>
<note position="1" velocity="1" note="52" length="1"/>
<note position="2" velocity="1" note="55" length="1"/>
<note position="3" velocity="1" note="60" length="1"/>

</sequence>
</noteSequences>

</DecentSampler>

In this example, we have a button that has two states: Off and On. When the button is in the Off state, we silence any
sequence that might be playing that has the identifier sequence_button_1. When the button is in the On state, we
tell the engine to play the sequence Maj1Slow. We will specify that it should be tracked internally using the identifier
sequence_button_1. That fact that we are specifying this identifier now will allow us to turn the sequence off later.

You can download the example file here and try it out for yourself. You will want to look in the
example-006-working-with-note-sequences/Example 6B - Triggering Sequences Using UI.
dspreset file.

Conclusion

In this guide, we went over how to create note sequences by hand and how to import them from MIDI files. We also
went over how to trigger sequences using MIDI and the UI. We hope this guide has been helpful to you.

How to control parameters using tags (Example: Mic-level Knobs)

As of version 1.0.2, the best way to implement mic-level knobs is using the new sample tagging feature. It is possible
to assign tags to specific samples. In this way, you can specify which type of sound they are:

<sample volume="0.0dB" tags="note,mic1" />
<sample volume="0.0dB" tags="rt,mic1" />
<sample volume="0.0dB" tags="note,mic2" />
<sample volume="0.0dB" tags="rt,mic2" />

1.12. Useful Tutorials and Resources 45

https://github.com/DecentSamples/DecentSampler-Sample-Library-Examples/releases/

DecentSampler, Release 1.11

You can also assign tags at the group level. You can also mix and match, and the tags specified at the group level will
be added to the list of tags already specified at the sample level:

<group tags="note">
<sample volume="0.0dB" tags="mic1" />
<sample volume="0.0dB" tags="mic2" />

</group>
<group tags="rt">
<sample volume="0.0dB" tags="mic1" />
<sample volume="0.0dB" tags="mic2" />

</group>

Then you can make controls with bindings that reference those tags:

<control x="246" y="115" parameterName="MIC 1" style="linear_bar_vertical" type="float"␣
→˓minValue="0" maxValue="100" value="60" width="20" height="70" trackForegroundColor=
→˓"FFFFFFFF" trackBackgroundColor="FF888888">
<binding type="amp" level="tag" identifier="mic1" parameter="AMP_VOLUME" />

</control>

<control x="346" y="115" parameterName="MIC 2" style="linear_bar_vertical" type="float"␣
→˓minValue="0" maxValue="100" value="60" width="20" height="70" trackForegroundColor=
→˓"FFFFFFFF" trackBackgroundColor="FF888888">
<binding type="amp" level="tag" identifier="mic2" parameter="AMP_VOLUME" />

</control>

How to do voice-muting for drums

Voice muting makes use of the tags functionality, these are text labels that you can use to identify samples or groups
of samples. You start by adding tags to all of your groups (you can also add them to individual samples if you’d like).
Next, you add a silencedByTags attribute to groups or sample elements that you want to be silenced by other samples.
When a sample with a tag matching one of the tags in the silencedByTags is played, it will silence the current sample
(or group).

Here’s an example:

<DecentSampler>
<groups>

<group tags="hihat" silencedByTags="hihat" silencingMode="fast">
<!-- Your samples go here. -->

</group>
</groups>

</DecentSampler>

Note the use of the silencingMode attribute as well (a value of “fast” means we immediately silence, whereas “nor-
mal” means we trigger the ADSR release phase).

46 Chapter 1. Contents

DecentSampler, Release 1.11

How to implement true legato

Let’s walk through how to build a basic true legato instrument. Legato instruments generally consist of either two or
three groups:

1. First, there’s the initial looping sustain sample that will get played when the note is first pressed down.

2. Then there is the legato transition sample that will get played when a second note gets pressed

3. (optional) Depending on the implementation, there may be a third looping sustain group that gets played after
the legato transition sample plays. In such cases, this third group usually contains the same samples as were used
in group 1.

Step 1: Voice muting

Before we get into legato, let’s talk about voice muting. This is the behavior wherein one set of samples causes another
set of samples to stop playing. This can be desirable in situations such as legato instruments where two samples should
not be sounding at the same time.

In Decent Sampler, voice-muting makes use of tags. These are text labels that you can use to identify samples or
groups of samples. You can add a silencedByTags attribute to groups or sample elements. This consists of a comma-
separated list of tags that specify which samples should silence the current samples. When a sample with a tag matching
one of the tags in the silencedByTags is played, it will silence the current sample (or group). Here’s an example:

<DecentSampler>
<groups>

<group tags="sustain" silencedByTags="legato" silencingMode="normal" release="1.0
→˓">

<!-- Your sustain samples go here. -->
</group>
<group tags="legato" silencedByTags="legato" silencingMode="normal" release="1.0

→˓">
<!-- Your legato samples go here. -->

</group>
</groups>

</DecentSampler>

In the above scenario, if a legato sample is matched, any sample that might be playing from the “sustain” group will
be stopped.

It’s also worth mention the silencingMode attribute as well (a value of fast means we immediately silence that
sample, whereas normal means we trigger the ADSR release phase).

Step 2: Legato

In order to specify which samples should be triggered first, we use the trigger attribute. This can that can be added
to the <group> or individual <sample> tags. The default value is attack, but there are two useful new values:

• first: This value means that this sample will only trigger if no other notes are playing

• legato: This value means that this sample will only trigger if other notes are already playing

Here is an example of how this might look in cunjunction with our example from above:

<DecentSampler>
<groups>

<group trigger="first" tags="sustain" silencedByTags="legato" silencingMode=
→˓"normal" release="1.0">

<!-- Your sustain samples go here. -->
(continues on next page)

1.12. Useful Tutorials and Resources 47

DecentSampler, Release 1.11

(continued from previous page)

</group>
<group trigger="legato" tags="legato" silencedByTags="legato" silencingMode=

→˓"normal" release="1.0">
<!-- Your legato samples go here. -->

</group>
</groups>

</DecentSampler>

Step 3: Specifying previous notes

When creating a legato instrument, it is often essential to limit which legato transition gets played based on which
note we are transition from. This can be achieved using either the previousNote or the legatoInterval attributes.
The previousNote attribute causes the engine to only play this sample if the previously triggered note matches the
specified note. Example usage:

<sample path="Samples/LV_Legato_F2_G2.wav" rootNote="G2" loNote="G2" hiNote="G2"␣
→˓previousNote="F2" start="43000" />
<sample path="Samples/LV_Legato_G2_A2.wav" rootNote="A2" loNote="A2" hiNote="A2"␣
→˓previousNote="G2" start="43000" />

The legatoInterval attribute causes the engine to only play the sample if distance between the current note and
the previously triggered note is exactly this semitone distance. For example, if the note for which this sample is being
triggered is a C3 and the legatoInterval is set to -2, then the sample will only play if the previous note was a D3
because D3 minus two semitones equals C3.

Step 4: Polyphony

In legato instruments, it is sometimes useful to limit polyphony for a specific sample or set of samples. This is achieve
using tags. At the top-level of your file, you can specify a element as follows:

<DecentSampler>
<groups>

<group tags="some-tag" >
<!-- ... -->

</group>
</groups>
<tags>

<tag name="some-tag" polyphony="1" />
</tags>

</DecentSampler>

Putting it all together

Here is a full example of a legato instrument:

<?xml version="1.0" encoding="UTF-8"?>

<DecentSampler pluginVersion="1">
<groups>
<group tags="sustain" silencedByTags="legato" trigger="first"

silencingMode="normal" release="0.3">
<sample path="Samples/LV_Sustain_D3.wav" rootNote="D3" loNote="C3" hiNote="D3"/>
<sample path="Samples/LV_Sustain_E3.wav" rootNote="E3" loNote="D#3" hiNote="E3"/>
<!-- More samples go here -->

</group>
(continues on next page)

48 Chapter 1. Contents

DecentSampler, Release 1.11

(continued from previous page)

<group tags="legato" silencedByTags="legato" trigger="legato"
silencingMode="normal" attack="0.1" decay="0.2" sustain="0" release="1">

previousNote="C#3"/>
<sample path="Samples/LV_Legato_D3_E3.wav" rootNote="E3" loNote="E3"

hiNote="E3" start="43000" previousNote="D3"/>
<sample path="Samples/LV_Legato_E3_F3.wav" rootNote="F3" loNote="F3"

hiNote="F3" start="43000" previousNote="E3"/>
<!-- More samples go here -->

</group>
<group tags="legato-tails" silencedByTags="legato-tails" trigger="legato"

attack="0.3" silencingMode="normal" release="0.3" start="5000">
<sample path="Samples/LV_Sustain_D3.wav" rootNote="D3" loNote="C3" hiNote="D3"/>
<sample path="Samples/LV_Sustain_E3.wav" rootNote="E3" loNote="D#3" hiNote="E3"/>
<!-- More samples go here -->

</group>
</groups>

</DecentSampler>

How to add Keyswitches

As of DecentSampler 1.4.0, it is now possible to implement keyswitches. For a long time, it’s been possible to trigger
events when a MIDI continuous controller event is received: for example, using MIDI CCs we can change knob values
or group volumes. Well, it is also possible to trigger events using MIDI notes as well. Here’s what the setup for a MIDI
note-based event mapping would look like:

<midi>
<note note="11">
<binding type="general" level="group" position="0" parameter="ENABLED"

translation="fixed_value" translationValue="true" />
<binding type="general" level="group" position="1" parameter="ENABLED"

translation="fixed_value" translationValue="false" />
</note>
<note note="12">
<binding type="general" level="group" position="0" parameter="ENABLED"

translation="fixed_value" translationValue="false" />
<binding type="general" level="group" position="1" parameter="ENABLED"

translation="fixed_value" translationValue="true" />
</note>

</midi>

In this example, MIDI note 11 turns on group 0 and turns off group 1, whereas MIDI note 12 does the opposite. Note
the use of the fixed_value translation type.

More documentation on this can be found here.

1.12. Useful Tutorials and Resources 49

	Contents
	File Format Overview
	The top-level <DecentSampler> element (required)

	The <ui> element
	The <tab> element
	The <button> element
	The <state> element
	The <image> element
	The <label> element
	The <labeled-knob> and <control> elements

	The <menu> element
	The <option> element

	The <keyboard> element
	The <color> element

	The <groups> element (required)
	The <group> element
	The <sample> element

	The <effects> element
	The <effect> element
	Low-pass, Band pass, and Hi-pass filter
	Notch EQ Filter
	Peak EQ Filter
	Gain effect
	Reverb effect
	Delay effect
	Chorus effect
	Phaser effect
	Convolution effect
	Wave Folder effect
	Wave Shaper effect

	The <midi> element
	The <cc> element
	The <note> element
	Bindings within the <midi> section

	The <noteSequences> element
	The <sequence> element
	The <note> element

	The <modulators> element
	The <lfo> element
	The <envelope> element
	How to use <binding>s in conjunction with modulators
	Modulator scope: global or voice-level

	The <tags> element
	The <tag> element

	Appendix A: The Color Format
	Appendix B: The <binding> element
	Binding Parameters for Targeting Note Sequences
	Controllable Parameters
	Translation Modes
	Mode #1: linear
	Mode #2: table
	Mode #3: fixed_value

	Appendix C: Boilerplate .dspreset File
	Useful Tutorials and Resources
	UI Elements
	How to Color the Keys of the On-Screen Keyboard
	How to turn keyboard note coloring on and off using bindings

	How to add Dropdown Menus
	Dropdown Menus
	The new fixed_value translation type

	Sample Mapping and Effects
	How to Use Note Sequences within your Sample Libraries
	Creating a sequence by hand
	The <noteSequences> element
	The <sequence> element
	The <note> element

	Creating a sequence using the sample editor
	Triggering sequences using MIDI
	Triggering note sequences using the UI
	Conclusion

	How to control parameters using tags (Example: Mic-level Knobs)
	How to do voice-muting for drums
	How to implement true legato
	How to add Keyswitches

